JAX unofficial implementation of "Fine-Tuning Language Models with Just Forward Passes"
Disclaimer: this is a work-in-progress and I am still relatively inexperienced with Jax. There could be bugs or inefficiencies in the code, feel free to open an issue or pull request!
This library adds functional transforms that take an input function fn(params, ...)
and transforms it into one that computes the approximate gradient with
respect to params
via a memory-efficient, zeroth-order (MeZO) method. This
allows for fine-tuning of models using only model forward passes, significantly
reducing the memory required.
See the original paper for more details on this method.
Install using pip install git+https://github.com/vvvm23/lora-jax
or navigate
to root of repository and run pip install .
Suppose we have a function we want to compute an approximate gradient for:
def fn(params, x):
y = x @ params['w'] = params['b']
return (y**2).mean()
We can create a new function that computes the MeZO gradient with respect to
the first argument by wrapping it in mezo_jax.mezo_grad
:
from mezo_jax import mezo_grad
grad_fn = mezo_grad(fn)
grad_fn
takes as input the original arguments and two additional values: the
noise scale and a PRNG key. The noise scale controls how much to permute the
parameters by, and the PRNG key is used to generate random arrays.
import jax
import jax.numpy as jnp
key = jax.random.PRNGKey(0xffff)
params = {'w': jnp.ones((2,2)), 'b': jnp.zeros((2,))}
key, x_key = jax.random.split(key)
x = jax.random.normal(x_key, (2,))
scale = 1e-3
key, mezo_key = jax.random.split(key)
grad = grad_fn(params, scale, mezo_key, x)
This returns the projected gradient. To rematerialize the full gradient it must be multiplied by the original noise array used to perturb the parameters.
We provide a helper function to apply the updates to the parameters:
from mezo_jax import apply_updates
learning_rate = 1e-4
new_params = apply_updates(params, learning_rate*grad, mezo_key)
If you want to simultaneously return the gradient and the value of fn
itself,
use mezo_jax.mezo_value_and_grad
.
If you return auxiliary data from your function (such as accuracy) pass
has_aux=True
to the mezo_grad
or mezo_value_and_grad
calls.
See examples/
for example usage in fine-tuning large language models.
- specify arbitrary parameters to exclude from updates
- specify arbitrary parameters to compute gradient with respect to
-
n
step gradient approximation - MeZO Adam computation
- example showing decoder-only model fine-tuning
- example showing encoder-only model fine-tuning
- example showing training on non-differentiable metric (like accuracy)