Stata package xtevent
estimates linear panel event-study models.
xtevent
is a Stata package to estimate linear panel event-study models. It includes three commands: xtevent
for estimation; xteventplot
to create event-study plots and; xteventtest
for post-estimation hypotheses testing.
- Last version: 2.1.1 (12aug2022)
- Current SSC version: 2.1.0 (1aug2022)
-
Version 2.1.1 (12aug2022):
- Fixed bugs present in xtevent 2.1.0.
- Updates in the help files and other documentation.
- See here for the complete update list.
-
Version 2.1.0 (1aug2022):
- Adds
diffavg
option toxtevent
to obtain the difference between the average post-event and pre-event coefficient estimates. - Adds
textboxoption
option toxteventplot
to specify characteristics for displaying the p-values of the pre-trend and leveling-off tests. - Fixed bugs present in version 2.0.0
- See here for the complete update list.
- Adds
-
Version 2.0.0 (24jun2022):
- Adds
impute
option for imputing missing values in the policy variable according to several available rules. See the help file to know more about the available imputation rules. - The option
nonstaggered
has been depreciated. The default option is now not to impute missing values or endpoints. You should now choose any of the imputation rules in theimpute
option. To get results using imputation consistent with staggered adoption, as in version 1.0.0 you should useimpute(stag)
. - Now the option
trend
allows for trend adjustment by either OLS or GMM. - Fixed several bugs present in version 1.0.0
- See here for the complete update list.
- Adds
ssc install xtevent
To update from an older version:
adoupdate xtevent, update
First, install the github
command:
net install github, from("https://haghish.github.io/github/")
Then execute:
cap github uninstall xtevent
github install JMSLab/xtevent
The github
command will also install all the necessary dependencies.
If you have an older version and want to update:
github update xtevent
cap ado uninstall xtevent
net install xtevent, from("https://raw.githubusercontent.com/JMSLab/xtevent/master")
help xtevent
Using xtevent 2.1.1
*setup
webuse nlswork
xtset idcode year
*Estimate a basic event study with clustered standard errors.
*Impute the policy variable without verifying staggered adoption.
xtevent ln_w age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(3) cluster(idcode) impute(nuchange)
*Omit fixed effects
xtevent ln_w age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(3) cluster(idcode) impute(nuchange) nofe note
*Adjust the pre-trend by estimating a linear trend by GMM
xtevent ln_w age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(2) cluster(idcode) impute(nuchange) trend(-2, ///
method(gmm))
*FHS estimator with proxy variables
xtevent ln_w age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(3) vce(cluster idcode) impute(nuchange) ///
proxy(wks_work)
*reghdfe and two-way clustering
xtevent ln_w age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(3) impute(nuchange) cluster(idcode year) reghdfe ///
proxy(wks_work)
*setup
webuse nlswork
xtset idcode year
*Add an extra effect if union equals 1
gen ln_wage2=ln_wage
replace ln_wage2=ln_wage2+0.5 if union==1
*Basic event study with clustered standard errors.
*Impute policy variable without verifying staggered adoption.
xtevent ln_wage2 age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(3) cluster(idcode) impute(nuchange)
* Plot
xteventplot
*Plot smoothest path in confidence region
xteventplot, smpath(line)
*FHS estimator with proxy variables
xtevent ln_wage age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(3) vce(cluster idcode) impute(nuchange) ///
proxy(wks_work)
*Dependent variable, proxy variable, and overlay plots
xteventplot, y
xteventplot, proxy
xteventplot, overlay(iv)
*setup
webuse nlswork
xtset idcode year
*Basic event study with clustered standard errors.
*Impute policy variable without verifying staggered adoption.
xtevent ln_w age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure , ///
pol(union) w(3) cluster(idcode) impute(nuchange)
*Test some coefficients to be equal to 0 jointly
xteventtest, coefs(1 2)
*Test that the sum of all pre-event coefficients is equal to 0
xteventtest, allpre cumul
*Test whether the coefficients before the event follow a linear trend
xteventtest, linpretrend
*Tests that the coefficients for the earliest 2 periods before the event are equal to 0
xteventtest, overidpre(2)
Our YouTube channel, Linear Panel Event-Study Design, contains a video series discussing xtevent
and the accompanying paper, Visualization, Identification, and Estimation in the Panel Event-Study Design.
Simon Freyaldenhoven, Christian Hansen, Jorge Pérez Pérez, and Jesse M. Shapiro. "Visualization, Identification, and Estimation in the Panel Event-Study Design." NBER Working Paper No. 29170, August 2021.