3D model implementations of:
DeepLab v3 - paper
UNET - paper
HRNet - paper
EXPNet - experiment models DefaultCNN, PrivCNN
main_folder_path
│
│───scans
│ └───scan1
│ └───pre
│ └───FLAIR.nii.gz
│ wmh.nii.gz
│──────scan2
│ └───pre
│ └───FLAIR.nii.gz
│ wmh.nii.gz
│──────scan3
│ └───pre
│ └───FLAIR.nii.gz
│ wmh.nii.gz
main_folder_path='../../Data/MS2017test/'
cd utils/
Train landmarks (for histogram normalization)
python trainLandmarks.py --mainFolderPath=$main_folder_path --pcRange=1-99
Resize and normalize scans (histogram normalization & per-subject normalization)
python resizeScans.py --mainFolderPath="$main_folder_path" --postfix=_200x200x100orig --noGIFS --withNorm=1 --size=200x200x100
Generate train/val split
python -c 'import PP; PP.generateTrainValFile(0.8, main_folder = "'$main_folder_path'", postfix="_200x200x100orig")'
Train architecture 0 (DeepLab v3). Model is saved in train_results/models/
python train.py --useGPU=1 --archId=0 --maxIter=100000 --lr=0.0001 --iterSize=25 --patchSize=60
Train EXPNet model (D1xD2xD3xD4_priv_aspp)
python train.py --experiment=1x1x1x1_1_1 --useGPU=1 --maxIter=100000 --lr=0.0001 --iterSize=25 --patchSize=60
Evaluate model. Results saved in eval_results/
python eval.py --patchPredSize=60 --modelPath=$modelpath --singleEval
PyTorch v0.2.0, Python 2.7