/RFDA-PyTorch

Official Code for 'Recursive Fusion and Deformable Spatiotemporal Attention for Video Compression Artifact Reduction' - ACM Multimedia2021 (ACMMM2021) Accepted Paper Task: Video Quality Enhancement / Video Compression Artifact Reduction

Primary LanguagePythonApache License 2.0Apache-2.0

โœจ RFDA-Pytorch โœจ

Official Code for 'Recursive Fusion and Deformable Spatiotemporal Attention for Video Compression Artifact Reduction'

ACM Multimedia 2021 (ACMMM2021) Accepted Paper

Task: Video Quality Enhancement / Video Compression Artifact Reduction

The code will be gradually open source!

Open Source Scheduler

1 Release RF and DSTA core code within one month after camera ready [Done]

2 Release test code and models at five QP [Done]

3 Release train code (you know, in a mass ) [Done]

4 Release its updated version BRF, with the following performance [TBD, Within One Week!]

Name \delta PSNR Params FPS(1080P)

RFDA 0.91 1250 1.05

BRF 1.01 739 1.49

I am not satisfied with this variant, however, it may be useful. Therefore, i decide to release it. It can be future improved by stacking our DSTA blocks.

๐Ÿ“ง Contact ๐Ÿ“ง

Feel free to contact me if you have any problems! zhaomy20@fudan.edu.cn

1. Pre-request

1.1. Environment

  • Ubuntu 20.04/18.04
  • CUDA 10.1
  • PyTorch 1.6
  • Packages: tqdm, lmdb, pyyaml, opencv-python, scikit-image

Suppose that you have installed CUDA 10.1, then:

$ git clone --depth=1 https://github.com/zhaominyiz/RFDA-PyTorch 
$ cd RFDA-PyTorch/
$ conda create -n video python=3.7 -y
$ conda activate video
$ python -m pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
$ python -m pip install tqdm lmdb pyyaml opencv-python scikit-image

1.2. DCNv2

Build DCNv2.

$ cd ops/dcn/
$ bash build.sh

(Optional) Check if DCNv2 works.

$ python simple_check.py

The DCNv2 source files here is different from the open-sourced version due to incompatibility. [issue]

๐Ÿ”ฅ 2. Train ๐Ÿ”ฅ

Build the dataset! check create_lmdb_mfqe_rf.py

Train RF only!

Train RFDA! check train_rf_ft.py!

โšก 3. Test โšก

3.1 Test MFQE 2.0 dataset

Please build the MFQE 2.0 dataset first (See Here), then run test_yuv_RF.py.

More instructions will coming soon!

$ python test_yuv_RF.py --opt_path config/****.yml

3.2 Test your own video clip

For yuv videos, you may refer to test_one_video_yuv_RF.py.

$ python test_one_video_yuv_RF.py --opt_path config/****.yml

For rgb videos, we will update new model and codes soon.

๐ŸŒฑ 3.3 Pretrain models ๐ŸŒฑ

RFDAQP22,27,32,37,42(trained on YUV space): BaiduDisk (RFDA) GoogleDisk

BRFQP37(trained on YUV space): ToBeDone!

๐Ÿป Results ๐Ÿป

Comparison with State of the Art Methods

vssota

Speed and parameter size comparison

speedvs

๐Ÿ’– Visualization Video Demo ๐Ÿ’–

RFDA_Quick_DEMO.mp4

๐Ÿ˜‰ Related Works ๐Ÿ˜‰

ยท Boosting the performance of video compression artifact reduction with reference frame proposals and frequency domain information [Paper]

ยท Non-local convlstm for video compression artifact reduction [Paper] [Code]

๐Ÿ˜† Citation ๐Ÿ˜†

If you find this project is useful for your research, please cite:

@inproceedings{zhao2021recursive,
  title={Recursive Fusion and Deformable Spatiotemporal Attention for Video Compression Artifact Reduction},
  author={Zhao, Minyi and Xu, Yi and Zhou, Shuigeng},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  pages={5646--5654},
  year={2021}
}

๐Ÿ‘ Special Thanks ๐Ÿ‘

Our framework is based on STDF-Pytoch. Thank RyanXingQL for his work!