/Screenshot-to-code-in-Keras

A neural network that transforms a screenshot into a static website

Primary LanguageJupyter NotebookOtherNOASSERTION

Turning design mockups into code with deep learning

Cloud GPU MIT

This is the code for the article 'Turning design mockups into code with deep learning' on FloydHub's blog.

Within three years deep learning will change front-end development. It will increase prototyping speed and lower the barrier for building software.

The field took off last year when Tony Beltramelli introduced the pix2code paper and Airbnb launched sketching interfaces.

Currently, the largest barrier to automating front-end development is computing power. However, we can use current deep learning algorithms, along with synthesized training data, to start exploring artificial front-end automation right now.

In the provided models, we’ll teach a neural network how to code a basic HTML and CSS website based on a picture of a design mockup.

We’ll build the neural network in three iterations. Starting with a Hello World version, followed by the main neural network layers, and ending by training it to generalize.

A quick overview of the process:

1) Give a design image to the trained neural network

Insert image

2) The neural network converts the image into HTML markup

3) Rendered output

Screenshot

Installation

FloydHub

Run on FloydHub

Click this button to open a Workspace on FloydHub where you will find the same environment and dataset used for the Bootstrap version. You can also find the trained models for testing.

pip install floyd-cli
floyd login
git clone https://github.com/emilwallner/Screenshot-to-code-in-Keras
cd Screenshot-to-code-in-Keras/floydhub 
floyd init projectname
floyd run --gpu --env tensorflow-1.4 --data emilwallner/datasets/imagetocode/2:data --data emilwallner/datasets/html_models/1:weights --mode jupyter

Local

pip install keras tensorflow pillow h5py jupyter
git clone https://github.com/emilwallner/Screenshot-to-code-in-Keras
cd Screenshot-to-code-in-Keras/local
jupyter notebook

Go do the desired notebook, files that end with '.ipynb'. To run the model, go to the menu then click on Cell > Run all

The final version, the Bootstrap version, is prepared with a small set to test run the model. If you want to try it with all the data, you need to download the data here: https://www.floydhub.com/emilwallner/datasets/imagetocode, and specify the correct dir_name.

Folder structure

  |-floydhub                               #Folder to run the project on Floyhub
  |  |-Bootstrap                           #The Bootstrap version
  |  |  |-compiler                         #A compiler to turn the tokens to HTML/CSS (by pix2code)
  |  |-Hello_world                         #The Hello World version
  |  |-HTML                                #The HTML version
  |  |  |-resources									
  |  |  |  |-Resources_for_index_file      #CSS and images to test index.html file
  |  |  |  |-html                          #HTML files to train it on
  |  |  |  |-images                        #Screenshots for training
  |-local                                  #Local setup
  |  |-Bootstrap                           #The Bootstrap version
  |  |  |-compiler                         #A compiler to turn the tokens to HTML/CSS (by pix2code)
  |  |  |-resources											
  |  |  |  |-eval_light                    #10 test images and markup
  |  |-Hello_world                         #The Hello World version
  |  |-HTML                                #The HTML version
  |  |  |-Resources_for_index_file         #CSS,images and scripts to test index.html file
  |  |  |-html                             #HTML files to train it on
  |  |  |-images                           #Screenshots for training
  |-readme_images                          #Images for the readme page

Hello World

HTML

Bootstrap

Model weights

Acknowledgments

  • Thanks to IBM for donating computing power through their PowerAI platform
  • The code is largely influenced by Tony Beltramelli's pix2code paper. Code Paper
  • The structure and some of the functions are from Jason Brownlee's excellent tutorial