AedyVader's Stars
CSP-GD/deep-learning-summary
深度學習綱要
arlosefj/github_interest
interest repositories
vkashyap10/DDPG-LQR
Osmel-dev/sustainable-RF-WET
mahesh191201/UAV-Wireless-Energy-Transfer-using-Machine-Learning
onel2428/WEToverview
MatLab scripts used to generate the results illustrated in paper: "Massive Wireless Energy Transfer: Enabling Sustainable IoT Towards 6G Era"
msingh017/THE-USE-OF-MOBILE-SINK-FOR-QUALITY-DATA-COLLECTION-IN-ENERGY-HARVESTING-SENSOR-NETWORKS
td2510/UAV_Optimization_Using_KKT_conditions
whalewang410/Energy-Efficient_UAV_Communication_With_Trajectory_Optimization
ABDELHAMED2017/proximity
Power allocation in a dense cellular network using Q-learning
Phuong86/uav-deep-q
This is the source code using deep Q learning for calculate UAV resource allocation
yyds-xtt/UMC-DGC---CPY
[1] A Two-Stage Strategy for UAV-enabled Wireless Power Transfer in Unknown Environments 作者:Shi J, Cong P, Zhao L, et al. 出处:IEEE Transactions on Mobile Computing, 2023 摘要:由于具有机动性、高机动性和灵活性等突出优点,无人机(UAV)是可行的移动电源发射器,可以在地理受限的地区快速部署。它们非常适合使用无线电力传输(WPT)技术为能量受限的传感器节点(SN)供电。在本文中,我们研究了一个支持无人机的WPT系统,该系统将功率传输到未知位置的一组SN。一个关键的挑战是如何有效地收集SN的位置并设计功率传输方案。我们制定了一