sudo docker build -t vision-rush-image:1.0.1 --network host .
sudo docker run -d --name vision_rush_image --gpus=all --net host vision-rush-image:1.0.1
将训练所需的训练集txt文件、验证集txt文件以及标签txt文件分别放置在dataset文件夹下,并命名为相同的文件名(dataset下有各个txt示例)
针对所采用的两个模型,在main_train.py分别需要更改如下参数:
RepLKNet---cfg.network.name = 'replknet'; cfg.train.batch_size = 16
ConvNeXt---cfg.network.name = 'convnext'; cfg.train.batch_size = 24
bash main.sh
在merge.py中更改ConvNeXt模型路径以及RepLKNet模型路径,执行python merge.py后获取最终推理测试模型。
示例如下,通过post请求接口请求,请求参数为图像路径,响应输出为模型预测的deepfake分数
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
import json
import requests
import json
header = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36'
}
url = 'http://ip:10005/inter_api'
image_path = './dataset/val_dataset/51aa9b8d0da890cd1d0c5029e3d89e3c.jpg'
data_map = {'img_path':image_path}
response = requests.post(url, data=json.dumps(data_map), headers=header)
content = response.content
print(json.loads(content))