/CFSR

[IEEE TIP] Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach

Primary LanguagePython

[IEEE TIP] Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach

Gang Wu, Junjun Jiang, Junpeng Jiang, and Xianming Liu

AIIA Lab, Harbin Institute of Technology.


Paper2 Paper Models Results Hits

News

  • 🚀 Accepted by IEEE TIP.
  • Upload implementation codes
  • Upload pretrained models

This repository is the official PyTorch implementation of "Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach"

Recent progress in single-image super-resolution (SISR) has achieved remarkable performance, yet the computational costs of these methods remain a challenge for deployment on resource-constrained devices. In particular, transformer-based methods, which leverage self-attention mechanisms, have led to significant breakthroughs but also introduce substantial computational costs. To tackle this issue, we introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR), offering an effective and efficient solution for lightweight image super-resolution. The proposed method inherits the advantages of both convolution-based and transformer-based approaches. Specifically, CFSR utilizes large kernel convolutions as a feature mixer to replace the self-attention module, efficiently modeling long-range dependencies and extensive receptive fields with minimal computational overhead. Furthermore, we propose an edge-preserving feed-forward network (EFN) designed to achieve local feature aggregation while effectively preserving high-frequency information. Extensive experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance compared to existing lightweight SR methods. When benchmarked against state-of-the-art methods such as ShuffleMixer, the proposed CFSR achieves a gain of 0.39 dB on the Urban100 dataset for the x2 super-resolution task while requiring 26% and 31% fewer parameters and FLOPs, respectively.

Results

Results of x2, x3, and x4 SR tasks are available at Google Drive

Method Scale Params FLOPs Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) B100 (PSNR/SSIM) Urban100 (PSNR/SSIM) Manga109 (PSNR/SSIM)
VDSR $666 \mathrm{~K}$ $612.6 \mathrm{G}$ $31.35 / 0.8838$ $28.01 / 0.7674$ $27.29 / 0.7251$ $25.18 / 0.7524$ $28.83 / 0.8870$
LapSRN $813 \mathrm{~K}$ $149.4 \mathrm{G}$ $31.54 / 0.8852$ $28.09 / 0.7700$ $27.32 / 0.7275$ $25.21 / 0.7562$ $29.09 / 0.8900$
IDN $553 \mathrm{~K}$ $32.3 \mathrm{G}$ $31.82 / 0.8903$ $28.25 / 0.7730$ $27.41 / 0.7297$ $25.41 / 0.7632$ $29.41 / 0.8942$
CARN $592 \mathrm{~K}$ $90.9 \mathrm{G}$ $32.13 / 0.8937$ $28.60 / 0.7806$ $27.58 / 0.7349$ $26.07 / 0.7837$ $30.47 / 0.9084$
SRResNet $1,518 \mathrm{~K}$ $146 \mathrm{G}$ $32.17 / 0.8951$ $28.61 / 0.7823$ $27.59 / 0.7365$ $26.12 / 0.7871$ $30.48 / 0.9087$
IMDN $715 \mathrm{~K}$ $40.9 \mathrm{G}$ $32.21 / 0.8948$ $28.58 / 0.7811$ $27.56 / 0.7353$ $26.04 / 0.7838$ $30.45 / 0.9075$
LatticeNet $777 \mathrm{~K}$ $43.6 \mathrm{G}$ $32.18 / 0.8943$ $28.61 / 0.7812$ $27.57 / 0.7355$ $26.14 / 0.7844$ $-/-$
LAPAR-A $\times 4$ $659 \mathrm{~K}$ $94.0 \mathrm{G}$ $32.15 / 0.8944$ $28.61 / 0.7818$ $27.61 / 0.7366$ $26.14 / 0.7871$ $30.42 / 0.9074$
SMSR $1006 \mathrm{~K}$ $41.6 \mathrm{G}$ $32.12 / 0.8932$ $28.55 / 0.7808$ $27.55 / 0.7351$ $26.11 / 0.7868$ $30.54 / 0.9085$
ECBSR $603 \mathrm{~K}$ $34.7 \mathrm{G}$ $31.92 / 0.8946$ $28.34 / 0.7817$ $27.48 / 0.7393$ $25.81 / 0.7773$ $-/-$
PAN $272 \mathrm{~K}$ $28.2 \mathrm{G}$ $32.13 / 0.8948$ $28.61 / 0.7822$ $27.59 / 0.7363$ $26.11 / 0.7854$ $30.51 / 0.9095$
DRSAN $410 \mathrm{~K}$ $30.5 \mathrm{G}$ $32.15 / 0.8935$ $28.54 / 0.7813$ $27.54 / 0.7364$ $26.06 / 0.7858$ $-/-$
DDistill-SR $434 \mathrm{~K}$ $33.0 \mathrm{G}$ $32.23 / 0.8960$ $28.62 / 0.7823$ $27.58 / 0.7365$ $26.20 / 0.7891$ $30.48 / 0.9090$
RFDN $550 \mathrm{~K}$ $23.9 \mathrm{G}$ $32.24 / 0.8952$ $28.61 / 0.7819$ $27.57 / 0.7360$ $26.11 / 0.7858$ $30.58 / 0.9089$
ShuffleMixer $411 K$ $28.0 \mathrm{G}$ $32.21 / 0.8953$ $28.66 / 0.7827$ $27.61 / 0.7366$ $26.08 / 0.7835$ $30.65 / 0.9093$
CFSR (Ours) $307 \mathrm{~K}$ $17.5 \mathrm{G}$ $32.33/0.8964$ $28.73 / 0.7842$ $27.63 / 0.7381$ $26.21/0.7897$ $30.72 / 0.9111$

Citation

If you find this repository helpful, you may cite:

@ARTICLE{Wu_cfsr,
author={Wu, Gang and Jiang, Junjun and Junpeng Jiang and Liu, Xianming},
journal={IEEE Transactions on Image Processing}, 
title={Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach}, 
year={2024},
}

Acknowledgement

We thank the authors for their nice sharing of BasicSR, ECBSR, and ShuffleMixer