/end_to_end_ml_with_mlflow

Primary LanguageCSSApache License 2.0Apache-2.0

end_to_end_ml_with_mlflow

Workflows

  1. Update config.yaml
  2. Update schema.yaml
  3. Update params.yaml
  4. Update the entity
  5. Update the configuration manager in src config
  6. Update the components
  7. Update the pipeline
  8. Update the main.py
  9. Update the app.py

MLFLOW_TRACKING_URI=https://dagshub.com/spcCodes/end_to_end_ml_with_mlflow.mlflow
MLFLOW_TRACKING_USERNAME=spcCodes
MLFLOW_TRACKING_PASSWORD=<>
python script.py

export MLFLOW_TRACKING_URI=https://dagshub.com/spcCodes/end_to_end_ml_with_mlflow.mlflow

export MLFLOW_TRACKING_USERNAME=spcCodes

export MLFLOW_TRACKING_PASSWORD=<>

AWS-CICD-Deployment-with-Github-Actions

1. Login to AWS console.

2. Create IAM user for deployment

#with specific access

1. EC2 access : It is virtual machine

2. ECR: Elastic Container registry to save your docker image in aws


#Description: About the deployment

1. Build docker image of the source code

2. Push your docker image to ECR

3. Launch Your EC2 

4. Pull Your image from ECR in EC2

5. Lauch your docker image in EC2

#Policy:

1. AmazonEC2ContainerRegistryFullAccess

2. AmazonEC2FullAccess

3. Create ECR repo to store/save docker image

- Save the URI: 741655300158.dkr.ecr.us-east-1.amazonaws.com/mlproj

4. Create EC2 machine (Ubuntu)

5. Open EC2 and Install docker in EC2 Machine:

#optinal

sudo apt-get update -y

sudo apt-get upgrade

#required

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ubuntu

newgrp docker

6. Configure EC2 as self-hosted runner:

setting>actions>runner>new self hosted runner> choose os> then run command one by one

7. Setup github secrets:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION = us-east-1

AWS_ECR_LOGIN_URI = demo>>  566373416292.dkr.ecr.ap-south-1.amazonaws.com

ECR_REPOSITORY_NAME = simple-app

About MLflow

MLflow

  • Its Production Grade
  • Trace all of your expriements
  • Logging & tagging your model