/EvRGBHand

Official Code for CVPR 2024 paper "Complementing Event Streams and RGB Frames for Hand Mesh Reconstruction"

Primary LanguagePythonMIT LicenseMIT

EvRGBHand [CVPR'24] ✨✨

[📃Project Page] [Data] [Paper] [Models] [🎥Video]

This is the official PyTorch implementation of Complementing Event Streams and RGB Frames for Hand Mesh Reconstruction.This work investigates the feasibility of using events and images for HMR, and proposes the first solution to 3D HMR by complementing event streams and RGB frames.

teaser

Usage

Installation

# Create a new environment
conda create --name evrgb python=3.9
conda activate evrgb

# Install Pytorch
conda install pytorch=2.1.0  torchvision=0.16.0  pytorch-cuda=11.8 -c pytorch -c nvidia

# Install Pytorch3D
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install pytorch3d -c pytorch3d

# Install requirements
pip install -r requirements.txt

Our codebase is developed based on Ubuntu 23.04 and NVIDIA GPU cards.

Data Preparation

  • Download the EvRealHands dataset from EvHandPose and change the path in the src/datasets/dataset.yaml .
  • Download MANO models from MANO. Put the MANO_LEFT.pkl and MANO_RIGHT.pkl to models/mano.

Train

  • Modify the config file in src/configs/config .
python train.py  --config <config-path> 

Evaluation

python train.py --config <config-path>  --resume_checkpoint <pretrained-model> --config_merge <eval-config-path>  --run_eval_only --output_dir <output-dir>

#For example 
python train.py --config src/configs/config/evrgbhand.yaml --resume_checkpoint output/EvImHandNet.pth --config_merge src/configs/config/eval_temporal.yaml --run_eval_only --output_dir result/evrgbhand/

Citation

@inproceedings{Jiang2024EvRGBHand,
      title={Complementing Event Streams and RGB Frames for Hand Mesh Reconstruction}, 
      author={Jiang, Jianping and Zhou, Xinyu and Wang, Bingxuan and Deng, Xiaoming and Xu, Chao and Shi, Boxin},
      booktitle={CVPR},
      year={2024}
}

@article{jiang2024evhandpose,
  author    = {Jianping, Jiang and Jiahe, Li and Baowen, Zhang and Xiaoming, Deng and Boxin, Shi},
  title     = {EvHandPose: Event-based 3D Hand Pose Estimation with Sparse Supervision},
  journal   = {TPAMI},
  year      = {2024},
}

Acknowledgement

  • Our code is based on FastMETRO.
  • In our experiments, we use the official code of MeshGraphormer, FastMETRO, EventHands for comparison. We sincerely recommend that you read these papers to fully understand the method behind EvRGBHand.

Related Projects