/Optimization

Hyper-Parameter Tuning / BayesianOptimization / Gaussian Process / etc.

Primary LanguagePython

Optimization


Content outline

1. Bayesian Optimization

  • surrogate model
    • Gaussian Process
    • Tree-structured Parzen Estimators (TPE)
  • acquisition function
    • PI(Probability of Improvement)
    • EI(Expected Improvement)
    • UCB(upper confidence bound)

2. Gradient-based optimizer

  • 梯度下降法 / 牛顿法 / 拟牛顿法
  • Adam / AdaDelta / RMSProp...

3. Loss Function & Regularization

  • Logloss(cross entropy) / HingeLoss / ExpLoss etc.
  • L1 / L2 Regularization

一、贝叶斯优化

1.1 优化目标与适用场景

opt_problem

  • 优化目标: 运用尽可能少的搜索次数找到连续函数的全局最优解(Global Optimum)

  • 搜索空间: 典型的搜索空间是超矩形(hyper-rectangle),形如

    02search_space

  • 更适用于不高于20维的连续搜索空间: It is best-suited for optimization over continuous domains of less than 20 dimensions

  • 对随机噪声具备一定的容忍度: tolerates stochastic noise in function evaluations

1.2 目标函数f(x)的特点

  • expensive to evaluate: f(x)有较高的计算成本;
  • black box: f(x)的凹凸性、线性与否等函数性质均未知;
  • derivative-free: f(x)不一定可微,从而无法运用梯度下降法、牛顿法、拟牛顿法等基于梯度的优化算法;
  • continuous: f(x)连续型函数,从而可以用高斯过程等模型来拟合;
  • i.i.d noise: 默认噪音独立于参数评估与高斯过程,同时方差恒定;What is the difference between i.i.d noise and white noise?

1.3 贝叶斯包含两个重要组成部分

  • Surrogate Model: 作为先验分布,近似拟合参数点与优化函数之间的函数关系;
  • Acquisition Function: 基于后验分布评估可行域内的候选点,并确定下一轮的最佳搜索点;

1.4 总结

  • 贝叶斯优化用于求解黑盒、不可微函数的全局最优化问题;
    • BayesOpt is designed for black-box derivative free global optimization
  • 贝叶斯优化是“基于序列模型的优化方法”,它根据历史信息迭代模型后,再决定下一次的搜索点;
    • BayesOpt is a sequential model-based optimization (SMBO) approach
    • SMBO methods sequentially construct models to approximate the performance of hyperparameters based on historical measurements, and then subsequently choose new hyperparameters to test based on this model

二、Surrogate Model

2.1 Surrogate Model在贝叶斯优化中的作用

  • 作为先验分布函数,用于拟合参数点与优化目标之间的函数关系
  • Surrogate Model确定之后,就能生成函数在候选点处取值f(x)的后验分布
  • 例如,当高斯过程作为Surrogate Model时,对于新的候选点x_{n+1},基于贝叶斯公式,生成后验概率分布 posterior_distribution

2.2 常见的Surrogate Model及其对应的Package


三、Acquisition Function

3.1 Acquisition Function在贝叶斯优化中的作用

  • AF函数是基于后验分布生成的,它在exploring与exploiting之间取得一个平衡,并用于确定下一轮的采样点;

  • 优化问题如下:

    04_af

3.2 exploitation与exploration的平衡

  • exploitation(开发)

    • 倾向于选取后验分布中期望均值较大的点,期望均值与模型最终指标成正比;
    • 对当前已知的、表现良好的点附近进行更细致的寻优;
  • exploration(探索)

    • 倾向于选取后验分布中方差较大的点;
    • 对未知领域进行更进一步的探索;

3.3 常见AF函数

1) PI (Probability of Improvement)

05_PI

  • 核心**——衡量上升的概率
  • 缺点
    • 过于关注增长的概率,对增长幅度有所忽略;
    • 更关注exploitation,对exploration缺乏关注
2) EI (Expected Improvement) [参考文献:Paper_02]
  • 核心**——衡量上升的幅度

    06_1

  • 数学期望的求解

    06_2

  • EI最终的表达式

    06_3

3) UCB (upper confidence bound)

07_ucb

4) entropy search
  • [参考文献:Paper_02]
5) knowledge gradient
  • [参考文献:Paper_02]

四、贝叶斯优化的核心**与流程总结

4.1 核心**

  • 选择替代模型作为先验函数,用于构建参数与优化目标之间的函数关系
  • 先验函数在每一轮搜索之后都会进行迭代,表现为先验函数的参数得到更新
  • 后验分布会随着先验函数的更新而同步发生改变,进一步使得AF函数进行更新
  • 基于AF函数最大化,进行下一轮的最优参数的选取

4.2 贝叶斯优化流程

08_process

  • 基于高斯过程,确定函数f的先验分布
  • 基于初始空间填充设计,确定n个初始观测点,并计算函数f在对应观测点上的取值
  • 若寻优的累计次数不超过设定的最大次数阈值N,则重复以下过程:
    • 基于所有观测点更新f的后验分布
    • 基于上述后验分布,更新acquisition function,并将极大值点x_n作为下一次的观测点
    • 计算y_n = f(x_n),将(x_n, y_n)添加至已知数据集
  • 上传迭代完成之后,函数取最大值时对应的x_n即为贝叶斯优化得到的最佳参数

参考文献