Pinned Repositories
AMMM
BSC_IPC
CPA
The Compositional Perturbation Autoencoder (CPA) is a deep generative framework to learn effects of perturbations at the single-cell level. CPA performs OOD predictions of unseen combinations of drugs, learns interpretable embeddings, estimates dose-response curves, and provides uncertainty estimates.
dcdfg
Medulloblastoma-VAE
OpenData
pert_graph
projects
Embedded Systems Projects
SingleCell-VAE-Interpretability
Explainable_Synthetic_Data_Generation_Medulloblastoma
Explainable synthetic data generation for paediatric cancer research
AlejandroTL's Repositories
AlejandroTL/AMMM
AlejandroTL/BSC_IPC
AlejandroTL/CPA
The Compositional Perturbation Autoencoder (CPA) is a deep generative framework to learn effects of perturbations at the single-cell level. CPA performs OOD predictions of unseen combinations of drugs, learns interpretable embeddings, estimates dose-response curves, and provides uncertainty estimates.
AlejandroTL/dcdfg
AlejandroTL/Medulloblastoma-VAE
AlejandroTL/OpenData
AlejandroTL/pert_graph
AlejandroTL/projects
Embedded Systems Projects
AlejandroTL/SingleCell-VAE-Interpretability