/Meta-Weight-Net_Code-Optimization

A new code framework that uses pytorch to implement meta-learning, and takes Meta-Weight-Net as an example.

Primary LanguagePythonMIT LicenseMIT

Meta-Weight-Net_Code-Optimization

A new code framework that uses pytorch to implement meta-learning, and takes Meta-Weight-Net as an example.


By using a trick, meta-learning and meta-networks have become plug-and-play. We can now apply the meta learning algorithm directly to the existing pytorch model without rewriting it.

This code takes Meta-Weight-Net (Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting) as an example to show how to use this trick. It rewrites an optimizer to assign non leaf node tensors to model parameters. See meta.py and line 90-120 of main.py for details.

Environment

  • python 3.8
  • pytorch 1.9.0
  • torchvision 0.10.0

noisy_long_tail_CIFAR.py can generate noisy and long-tailed CIFAR datasets by calling torchvision.datasets. Because some class attributes' names have been changed, errors may occur in some earlier versions of torchvision. It can be solved by changing the corresponding attribute name.

Running this example

ResNet32 on CIFAR10-LT with imbalanced factor of 50:

python main.py --imbalanced_factor 50

ResNet32 on CIFAR10 with 40% uniform noise:

python main.py --meta_lr 1e-3 --meta_weight_decay 1e-4 --corruption_type uniform --corruption_ratio 0.4

Resuilt(CIFAR10)

Data Setting Test Accuracy
imbalanced factor 50 80.43%
imbalanced factor 100 75.92%
imbalanced factor 200 68.89%
40% uniform noise 87.83%

Acknowledgements

Thanks to the original code of Meta-Weight-Net (https://github.com/xjtushujun/meta-weight-net).

Contact: Shi Yunyi (2404208668@qq.com)