/DeepLearningCourse

:school: **科学院大学计算机科学与技术学院深度学习(徐俊刚老师)

Primary LanguagePython

国科大计算机学院深度学习作业

CONTENT

  • hw0:文献阅读(10篇)
  • hw1:MNIST数据集手写数字识别(准确率98.83%)
  • hw2:猫狗二分类(准确率91%以上)
  • hw3:自动写诗(首句写诗,藏头写诗)
  • hw4:电影中文影评情感分类(准确率,精度,召回率,F1分数,混淆矩阵指标分别达到了:86.18%,0.8626,0.8579,0.8603,[[157.0, 26.0], [25.0, 161.0]])
  • hw5:车牌识别,省份、地区、5个字符,3部分验证集准确率分别达到 100%,100%,98.5%。
  • hw6:实现 Transformer 机器翻译,英译汉。 https://github.com/Allenem/transformer

文件列表结构

由于猫狗分类、维基百科中文word2vec.bin等数据文件较大,本人并未全部上传至此仓库,可在如下地址下载数据集。

  • 实验1数据:MINIST 手写数据集
  • 实验2数据:从kaggle比赛官网 下载所需的猫狗分类数据;或者直接从此下载训练集测试集
  • 实验3数据:tang.npz 文件较小,已上传至本仓库,或者:链接:https://pan.baidu.com/s/1dtf9HOEY1jzqR51tyyQfjg 提取码:65qv 复制这段内容后打开百度网盘手机App,操作更方便哦
  • 实验4数据:Dataset (包含test.txt, train.txt, validation.txt, wiki_word2vec_50.bin):链接:https://pan.baidu.com/s/1VDYXwjSLO1sTC0XJKq9ggA 提取码:buuq 复制这段内容后打开百度网盘手机App,操作更方便哦
  • 实验5数据:LPD_dataset原始街道拍的含车牌汽车图像,dataset-train&val韩train和validation两个文件夹,分别包含province、area、letter三个文件夹,包含将车牌分割好的单个字块。PROVINCES = ("沪", "京", "闽", "苏", "粤", "浙"), AREAS = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"), LETTERS = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z")链接:https://pan.baidu.com/s/192uU_MrW2kOCVzfocR6zWg 提取码:3ry8

以下结构为完整结构:

.
│  README.md
│
├─hw0_paper_reading
│      0Deep residual learning for image recognition.pdf
│      0图像识别的深度残差学习.pptx
│      1Long-term Recurrent Convolutional Networks for Visual Recognition and Description.pdf
│      1用于视觉识别和描述的长期循环卷积网络.pptx
│      2Speech recognition with deep recurrent neural networks.pdf
│      2基于深度循环神经网络的语音识别.pptx
│      3Attention Is All You Need.pdf
│      3你只需要注意力.pptx
│      4A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization.pdf
│      4一种增强主题感知的卷积序列对序列的摘要模型.pptx
│      5Adaptive RNN for target-dependent Twitter Sentiment Classification.pdf
│      5自适应递归神经网络用于目标相关的推特情感分类.pptx
│      6Convolutional Neural Networks for Sentence Classification.pdf
│      6用于句子分类的卷积神经网络.pptx
│      7Fast R-CNN.pdf
│      7快速区域卷积神经网络.pptx
│      8You Only Look Once-Unified, Real-Time Object Detection.pdf
│      8你只需看一次——统一的实时的目标检测.pptx
│      9YOLOv3- An Incremental Improvement.pdf
│      9YOLOv3——一个渐进的改进.pptx
│
├─hw1_writing_digit_recognition
│  │  index.py
│  │  OUTPUT.txt
│  │  实验报告.docx
│  │  实验报告.pptx
│  │
│  └─MNIST_data
│          t10k-images-idx3-ubyte.gz
│          t10k-labels-idx1-ubyte.gz
│          train-images-idx3-ubyte.gz
│          train-labels-idx1-ubyte.gz
│
├─hw2_catVSdog_classification
│  │  index.py
│  │  OUTPUT.txt
│  │  实验报告.docx
│  │  实验报告.pptx
│  │
│  └─data
│      ├─test
│      │  ├─cat
│      │  │      cat.12000.jpg
│      │  │      ...
│      │  │      cat.12499.jpg
│      │  │
│      │  └─dog
│      │          dog.12000.jpg
│      │          ...
│      │          dog.12499.jpg
│      │
│      └─train
│          ├─cat
│          │      cat.0.jpg
│          │      ...
│          │      cat.999.jpg
│          │
│          └─dog
│                  dog.0.jpg
│                  ...
│                  dog.999.jpg
│
├─hw3_write_poetry_automatically
│      aotomatic_writing_poetry.ipynb
│      model.pth
│      tang.npz
│      实验报告.docx
│      实验报告.pptx
│
├─hw4_movie_chinese_comments_sentiment_classification
│    │  Chinese_movie_comments_sentiment_classification.ipynb
│    │  model.pth
│    │  实验报告.docx
│    │  实验报告.pptx
│    │
│    └─Dataset
│            test.txt
│            train.txt
│            validation.txt
│            wiki_word2vec_50.bin
│
└─hw5_vehicle_license_plate_recognition
    │  preprocessing.py
    │  train-license-province.py
    │  train-license-area.py
    │  train-license-letter.py
    │  实验报告.docx
    │  实验报告.pptx
    │  
    ├─LPD_dataset
    │  ├─train
    │  └─val
    │  
    ├─preprocessed
    │  ├─train
    │  │  ├─correct
    │  │  ├─crop
    │  │  │  ├─川A09X20
    ...
    │  │  │  └─粤BA103N
    │  │  └─rgb2gray
    │  └─val
    │      ├─correct
    │      ├─crop
    │      │  ├─浙A03168
    ...
    │      │  └─粤X30479
    │      └─rgb2gray
    │  
    ├─dataset-train&val
    │  ├─training-set
    │  │  ├─area
    │  │  │  ├─10
    ...
    │  │  │  └─35
    │  │  ├─letter
    │  │  │  ├─0
    ...
    │  │  │  ├─33
    │  │  └─province
    │  │      ├─0
    ...
    │  │      └─5
    │  └─validation-set
    │    ├─area
    │    │  ├─10
    ...
    │    │  └─35
    │    ├─letter
    │    │  ├─0
    ...
    │    │  ├─33
    │    └─province
    │        ├─0
    ...
    │        └─5
    │  
    ├─test_images
    └─train-saver
        ├─area
        ├─letter
        └─province