1. c3d 8 conv layers + 5 pooling layers + 2 fc layers + softmax homogeneous:3x3x3 s1 conv throughout pool1:1x2x2 kernel size & stride,rest 2x2x2 fc dims:4096 C3D video descriptor:fc6 activations + L2-norm dropout: 论文里面没提,但是下面那个github的实现里面加了

  2. 3d-resnet r18和r34,后续文章探讨了更深的resnet,有人说效果奇差:https://github.com/kenshohara/3D-ResNets local cfg = { [10] = {{1, 1, 1, 1}, 512, basicblock}, [18] = {{2, 2, 2, 2}, 512, basicblock}, [34] = {{3, 4, 6, 3}, 512, basicblock}, [50] = {{3, 4, 6, 3}, 2048, bottleneck}, [101] = {{3, 4, 23, 3}, 2048, bottleneck}, [152] = {{3, 8, 36, 3}, 2048, bottleneck}, } identity shortcuts:use zero-padding 7x7x7 stem + 3x3x3 conv blocks + GAP + 400d-fc + softmax

  3. pseudo-resnet 伪3d:通过1x3x3和3x1x1的S和T来实现 bottleneck 循环ABC bottleneck blocks model size:r50: 92M,p3d-r50: 98M input: 16x160x160 with an extra dropout layer with 0.9 dropout rate