-
siamese & contrastive loss shared cnn ap & an pairs各占一半,生成pairs贼慢 siamese论文是cosine distance,contrastive loss论文是euclidean distance optimize target: disp->0, disn>m 尝试设置m=1和2,对结果影响不大,test center acc=0.981
-
facenet & triplet-loss a-p-n pairs online triplet selection within mini-batch: keep all aps & hard ans l2 norm, l2 distance, 每个mini-batch要各类别均匀采样 训练不收敛
-
center-loss embedding version不太好收敛,scale不好调 在softmax分类头上test acc早就1了, 用metric和质心度量类别准确率只有0.99,因为center-loss只关注类内距离 两个超参:remains stable across a large range,论文没有给出最佳/建议value,lambda 0-0.1,alpha 0.01-1
-
triplet-center-loss 是center-loss的补充,类内基础上再加上类间, 其中类间选用距离最小的簇心距离 改善了center-loss画图不好看的问题,joint supervision主要还是靠softmax头
-
circle-loss circle loss的输出也是embedding,然后通过计算和每个类别簇心的cosine distance得到类别 optimize target: simp->1+m & simn->-m 是目前实验下来用embedding度量类别里面结果最好的,test center acc=1.0 而且N -> N*N的计算(case to pair)在网络里面,比较高效
-
vis 用TSNE降维高维的embedding到2d上,不全可分的,没论文好看 直接训2d embedding可能比较好看
AmberzzZZ/metric_learning
keras implementation of metric-based methods (center-loss, circle-loss, triplets...)
Python