The objective is to serve a local llama-2
model by mimicking an OpenAI API service.
The llama2 model runs on GPU using ggml-sys
crate with specific compilation flags.
The easiest way of getting started is using the official Docker container. Make sure you have docker
and docker-compose
installed on your machine (example install for ubuntu20.04).
cria
provides two docker images : one for CPU only deployments and a second GPU accelerated image. To use GPU image, you need to install the NVIDIA Container Toolkit. We also recommend using NVIDIA drivers with CUDA version 11.7 or higher.
To deploy the cria
gpu version using docker-compose
:
- Clone the repos:
git clone git@github.com:AmineDiro/cria.git
cd cria/docker
- The api will load the model located in
/app/model.bin
by default. You should change the docker-compose file with ggml model path for docker to bind mount. You can also change environement variables for your specific config. Alternatively, the easiest way is to setCRIA_MODEL_PATH
in adocker/.env
:
# .env
CRIA_MODEL_PATH=/path/to/ggml/model
# Other environement variables to set
CRIA_SERVICE_NAME=cria
CRIA_HOST=0.0.0.0
CRIA_PORT=3000
CRIA_MODEL_ARCHITECTURE=llama
CRIA_USE_GPU=true
CRIA_GPU_LAYERS=32
CRIA_ZIPKIN_ENDPOINT=http://zipkin-server:9411/api/v2/spans
- Run
docker-compose
to startup thecria
API server and the zipkin server
docker compose up -f docker-compose-gpu.yaml -d
- Enjoy using your local LLM API server 🤟 !
-
Git clone project
git clone git@github.com:AmineDiro/cria.git cd cria/
-
Build project ( I ❤️ cargo !).
cargo b --release
- For
cuBLAS
(nvidia GPU ) acceleration usecargo b --release --features cublas
- For
metal
acceleration usecargo b --release --features metal
❗ NOTE: If you have issues building for GPU, checkout the building issues section
- For
-
Download GGML
.bin
LLama-2 quantized model (for example llama-2-7b) -
Run API, use the
use-gpu
flag to offload model layers to your GPU./target/cria -a llama --model {MODEL_BIN_PATH} --use-gpu --gpu-layers 32
All the parameters can be passed as environment variables or command line arguments. Here is the reference for the command line arguments:
./target/cria --help
Usage: cria [OPTIONS]
Options:
-a, --model-architecture <MODEL_ARCHITECTURE> [default: llama]
--model <MODEL_PATH>
-v, --tokenizer-path <TOKENIZER_PATH>
-r, --tokenizer-repository <TOKENIZER_REPOSITORY>
-H, --host <HOST> [default: 0.0.0.0]
-p, --port <PORT> [default: 3000]
-m, --prefer-mmap
-c, --context-size <CONTEXT_SIZE> [default: 2048]
-l, --lora-adapters <LORA_ADAPTERS>
-u, --use-gpu
-g, --gpu-layers <GPU_LAYERS>
--n-gqa <N_GQA>
Grouped Query attention : Specify -gqa 8 for 70B models to work
-z, --zipkin-endpoint <ZIPKIN_ENDPOINT>
-h, --help Print help
For environment variables, just prefix the argument with CRIA_
and use uppercase letters. For example, to set the model path, you can use CRIA_MODEL
environment variable.
There is a an example docker/.env.sample
file in the project root directory.
We are exporting Prometheus metrics via the /metrics
endpoint.
We are tracing performance metrics using tracing
and tracing-opentelemetry
crates.
You can use the --zipkin-endpoint
to export metrics to a zipkin endpoint.
There is a docker-compose file in the project root directory to run a local zipkin server on port 9411
.
You can use openai
python client or directly use the sseclient
python library and stream messages.
Here is an example :
Here is a example using a Python client
import json
import sys
import time
import sseclient
import urllib3
url = "http://localhost:3000/v1/completions"
http = urllib3.PoolManager()
response = http.request(
"POST",
url,
preload_content=False,
headers={
"Content-Type": "application/json",
},
body=json.dumps(
{
"prompt": "Morocco is a beautiful country situated in north africa.",
"temperature": 0.1,
}
),
)
client = sseclient.SSEClient(response)
s = time.perf_counter()
for event in client.events():
chunk = json.loads(event.data)
sys.stdout.write(chunk["choices"][0]["text"])
sys.stdout.flush()
e = time.perf_counter()
print(f"\nGeneration from completion took {e-s:.2f} !")
You can clearly see generation using my M1 GPU:
- Run Llama.cpp on CPU using llm-chain
- Run Llama.cpp on GPU using llm-chain
- Implement
/models
route - Implement basic
/completions
route - Implement streaming completions SSE
- Cleanup cargo features with llm
- Support MacOS Metal
- Merge completions / completion_streaming routes in same endpoint
- Implement
/embeddings
route - Implement route
/chat/completions
- Setup good tracing (Thanks to @aparo)
- Docker deployment on CPU/GPU
- Metrics : Prometheus (Thanks to @aparo)
- Implement a global request queue
- For each response put an entry in a queue
- Spawn a model in separate task reading from ringbuffer, get entry and put each token in response
- Construct stream from flume resp_rx chan and stream responses to user.
- Implement streaming chat completions SSE
- Setup CI/CD (thanks to @Benjamint22 )
- BETTER ERRORS and http responses (deal with all the unwrapping)
- Implement request batching
- Implement request continuous batching
- Maybe Support huggingface
candle
lib for a full rust integration 🤔 ?
Details on OpenAI API docs: https://platform.openai.com/docs/api-reference/