Fréchet-Karcher Mean with low sample support: exploiting random matrix theory and Riemannian geometry
This repository contains the code and source for the following paper accepted at ICML 2024:
Random matrix theory improved Frechet mean of symmetric positive definite matrices, Florent Bouchard, Ammar Mian, Malik Tiomoko, Guillaume Ginolhac, Frederic Pascal
Preprint available at: https://arxiv.org/abs/2405.06558
It is organised as follows:
code/
contains the code used to produce the numerical and real-data experiments presented in the paperpaper
contains the source of the paper (LaTeX files) to compile the paper (file main.tex)
If you use any code in this repository please cite us using:
@misc{bouchard2024random, title={Random matrix theory improved Fr'echet mean of symmetric positive definite matrices}, author={Florent Bouchard and Ammar Mian and Malik Tiomoko and Guillaume Ginolhac and Frédéric Pascal}, year={2024}, eprint={2405.06558}, archivePrefix={arXiv}, primaryClass={stat.ML} }