- ref: kNN-CUDA
- ref: pytorch knn cuda
- author: sli@mail.bnu.edu.cn
- Aten support
- pytorch v1.0+ support
- pytorch c++ extention
- dim = 5
- k = 100
- ref = 224
- query = 224
- Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
- NVIDIA GeForce 940MX
Loop | sklearn | CUDA | Memory |
---|---|---|---|
100 | 2.34 ms | 0.06 ms | 652/1024 |
1000 | 2.30 ms | 1.40 ms | 652/1024 |
- from source
git clone https://github.com/unlimblue/KNN_CUDA.git
cd KNN_CUDA
make && make install
- from wheel
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl
And then, make sure ninja
has been installed:
wget -P /usr/bin https://github.com/unlimblue/KNN_CUDA/raw/master/ninja
import torch
# Make sure your CUDA is available.
assert torch.cuda.is_available()
from knn_cuda import KNN
"""
if transpose_mode is True,
ref is Tensor [bs x nr x dim]
query is Tensor [bs x nq x dim]
return
dist is Tensor [bs x nq x k]
indx is Tensor [bs x nq x k]
else
ref is Tensor [bs x dim x nr]
query is Tensor [bs x dim x nq]
return
dist is Tensor [bs x k x nq]
indx is Tensor [bs x k x nq]
"""
knn = KNN(k=10, transpose_mode=True)
ref = torch.rand(32, 1000, 5).cuda()
query = torch.rand(32, 50, 5).cuda()
dist, indx = knn(ref, query) # 32 x 50 x 10