Object Detection with MobileNet-SSD, MobileNetV2-SSD/SSDLite on VOC, BDD100K Datasets.
- Detection
- View the result on Youtube
- Python 3.6+
- OpenCV
- PyTorch
- Pyenv (optional)
The dataset path should be structured as follow:
|- bdd100k -- bdd100k -- images -- 100k -- train -- (70000 images)
| | |- val -- (10000 images)
| |
| |- labels -- (.json)
| |
| |- xml -- train -- (.xml)
| |- val -- (.xml)
|
|- MobileNets-SSD -- data -- VOCdevkit -- test -- VOC2007 -- (Annotations, ImageSets, JPEGImages,...)
(our repo) | |- VOC2007 -- (Annotations, ImageSets, JPEGImages,...)
|
|- bdd_files
|- images
|- models
|- ...
|- train_ssd_BDD.py
|- ssd_test_img.py
|- ...
@TranLeAnh
- Convert BDD100K anotation format (.json) to VOC anotation format (.xml)
$ python bdd2voc.py
- Remove training samples having no anotation (70000 to 69863)
notebook: remove_nolabel_data.ipynb
- MobileNet-SSD
$ wget -P models https://storage.googleapis.com/models-hao/mobilenet-v1-ssd-mp-0_675.pth
- MobileNetV2-SSDLite
$ wget -P models https://storage.googleapis.com/models-hao/mb2-ssd-lite-mp-0_686.pth
- Train MobileNet-SSD (VOC)
$ python train_ssd_VOC.py --datasets ~/data/VOCdevkit/VOC2007/ --validation_dataset ~/data/VOCdevkit/test/VOC2007/ --net mb1-ssd --batch_size 24 --num_epochs 100 --scheduler cosine --lr 0.01 --t_max 200
- Train MobileNet-SSD (BDD100K)
$ python train_ssd_BDD.py --datasets ../bdd100k/bdd100k/images/100k/train/ --validation_dataset ../bdd100k/bdd100k/images/100k/val/ --net mb1-ssd --batch_size 48 --num_epochs 200 --scheduler cosine --lr 0.01 --t_max 200
- Resume training a trained model (BDD100K)
$ python train_ssd_BDD.py --datasets ../bdd100k/bdd100k/images/100k/train/ --validation_dataset ../bdd100k/bdd100k/images/100k/val/ --net mb1-ssd --batch_size 48 --num_epochs 200 --scheduler cosine --lr 0.01 --t_max 200 --resume models/mb1-ssd-Epoch-105-Loss-inf.pth
- Train pretrained-model MobileNetV2-SSDLite (BDD100K)
$ python train_ssd_BDD.py --datasets ../bdd100k/bdd100k/images/100k/train/ --validation_dataset ../bdd100k/bdd100k/images/100k/val/ --net mb2-ssd-lite --pretrained_ssd models/mb2-ssd-lite-net.pth --scheduler cosine --lr 0.01 --t_max 100 --batch_size 36 --num_epochs 200
$ python train_ssd_BDD.py --datasets ../bdd100k/bdd100k/images/100k/train/ --validation_dataset ../bdd100k/bdd100k/images/100k/val/ --net mb2-ssd-lite --resume models/(trained-model-name).pth --batch_size 16 --num_epochs 100 --scheduler cosine --lr 0.001 --t_max 100 --debug_steps 10
- Test on image
$ python ssd_test_img.py
- Test on video
$ python ssd_test_video.py
- Print out text file (.txt) of dectection information
notebook: print_text_files.ipynb
- File format: {image_name}.txt [ class_name confidence x1 y1 x2 y2 ]
car 0.980528 194 356 466 513
car 0.897605 752 372 975 467
car 0.414176 580 372 646 416
traffic_light 0.605162 844 178 867 225
traffic_light 0.602555 816 176 841 224
traffic_light 0.495851 109 62 141 124
truck 0.580303 167 265 485 483
April 2020
Tran Le Anh