# trullekrul MATLAB/Octave scripts for anisotropic mesh adaptation, topology optimization and finite element methods
Topology optimization and anisotropic mesh adaptation for optimal heat conduction in 2D and 3D:
top5000(2e-3,5e-3,0.5,false,[],[],0.1,[],1/20,300,1e-3,pi/5,'fig7c');
top5000(0.4,7e-2,0.1,true,0.75,0.7,0.5,1.5,1/10,283,1e-3,pi/4,'fig9b'):
See the WCSMO12 conference proceeding for a detailed description: https://drive.google.com/file/d/0B9uPpc2f4SZ5TnBjclJFaERSQWs
The same technology can be used for 2D/3D minimum compliance in linear elasticity:
top5001(7.5e2 ,2e-2,0.5 ,0.3,false,2,1, [],1/20,400 ,1e-2,'fig5b',1.025,5,false);
top5001(2e3 ,2e-2,0.1 ,0.3,2 ,2,0.5,0.25,1/10,400,1e-3,'fig8a',1.025,5,2);
For more details visit the IMR26 paper: https://drive.google.com/open?id=18DRlj6_-MzhOid0BlXC-C-sJvQAm5KnF . Note that the severe objective oscillations reported for 3D in the original IMR26 paper have been fixed.
Finally the technology can be used in Stokes flow with Darcy numbers down to 1e-9, see https://drive.google.com/file/d/1bxHijGOlWnzOBDGfP1Sx5Xk03C9_iy5s/view?usp=sharing
top5002(-1e3, 0.8 ,1e9, [1 1 0.05 0.05 ], 0.01, 141, 'No2',1);
top5002(-5e3, 0.5, 1e9, [2 3 ], 0.01, 1e4, 'No9',5);
top5002(-1e4, 0.1, 1e7, [ ], 0.01, 1e3, 'No15',3);
Extremely low volume fractions are also trivial to handle.