Useful utilities for Python.
Supports Python 2.7+ and 3.2+.
The Collection
class provides a fluent, convenient wrapper for working with list of data.
To instantiatte a Collection
you can also use the collect()
helper.
For the remainder of this documentation, we'll discuss each method available on the Collection
class. Remember, all of these methods may be chained for fluently manipulating the underlying list or dict. Furthermore, almost every method returns a new Collection
instance, allowing you to preserve the original copy of the collection when necessary.
You may select any method from this table to see an example of its usage:
- all
- avg
- chunk
- collapse
- contains
- count
- diff
- each
- every
- filter
- first
- flatten
- forget
- for_page
- get
- implode
- is_empty
- last
- map
- merge
- pluck
- pop
- prepend
- pull
- push
- put
- reduce
- reject
- reverse
- serialize
- shift
- sort
- sum
- take
- to_json
- transform
- unique
- where
- zip
The all
method simply returns the underlying list represented by the collection:
Collection([1, 2, 3]).all()
# [1, 2, 3]
The avg
method returns the average of all items in the collection:
Collection([1, 2, 3, 4, 5]).avg()
# 3
If the collection contains nested objects or dictionaries, you must pass a key to use for determining which values to calculate the average:
collection = Collection([
{'name': 'JavaScript: The Good Parts', 'pages': 176},
{'name': 'JavaScript: The Defnitive Guide', 'pages': 1096}
])
collection.avg('pages')
# 636
The chunk
method breaks the collection into multiple, smaller collections of a given size:
collection = Collection([1, 2, 3, 4, 5, 6, 7])
chunks = collection.chunk(4)
chunks.serialize()
# [[1, 2, 3, 4], [5, 6, 7]]
The collapse
method collapses a collection of lists into a flat collection:
collection = Collection([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
collapsed = collection.collapse()
collapsed.all()
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
The contains
method determines whether the collection contains a given item:
collection = Collection(['foo', 'bar'])
collection.contains('foo')
# True
You can also use the in
keyword:
'foo' in collection
# True
You can also pass a key / value pair to the contains
method, which will determine if the given pair exists in the collection:
collection = Collection([
{'name': 'John', 'id': 1},
{'name': 'Jane', 'id': 2}
])
collection.contains('name', 'Simon')
# False
Finally, you may also pass a callback to the contains
method to perform your own truth test:
collection = Collection([1, 2, 3, 4, 5])
collection.contains(lambda item: item > 5)
# False
The count
method returns the total number of items in the collection:
collection = Collection([1, 2, 3, 4])
collection.count()
# 4
The len
function can also be used:
len(collection)
# 4
The diff
method compares the collection against another collection, a list
or a dict
:
collection = Collection([1, 2, 3, 4, 5])
diff = collection.diff([2, 4, 6, 8])
diff.all()
# [1, 3, 5]
The each
method iterates over the items in the collection and passes each item to a given callback:
posts.each(lambda post: post.author().save(author))
Return False
from your callback to break out of the loop:
posts.each(lambda post: post.author().save(author) if author.name == 'John' else False)
The every
method creates a new collection consisting of every n-th element:
collection = Collection(['a', 'b', 'c', 'd', 'e', 'f'])
collection.every(4).all()
# ['a', 'e']
You can optionally pass the offset as the second argument:
collection.every(4, 1).all()
# ['b', 'f']
The filter
method filters the collection by a given callback, keeping only those items that pass a given truth test:
collection = Collection([1, 2, 3, 4])
filtered = collection.filter(lambda item: item > 2)
filtered.all()
# [3, 4]
The first
method returns the first element in the collection that passes a given truth test:
collection = Collection([1, 2, 3, 4])
collection.first(lambda item: item > 2)
# 3
You can also call the first
method with no arguments to get the first element in the collection. If the collection is empty, None
is returned:
collection.first()
# 1
The flatten
method flattens a multi-dimensional collection into a single dimension:
collection = Collection([1, 2, [3, 4, 5, {'foo': 'bar'}]])
flattened = collection.flatten()
flattened.all()
# [1, 2, 3, 4, 5, 'bar']
The forget
method removes an item from the collection by its key:
collection = Collection([1, 2, 3, 4, 5])
collection.forget(1)
collection.all()
# [1, 3, 4, 5]
Warning
Unlike most other collection methods, forget
does not return a new modified collection; it modifies the collection it is called on.
The for_page
method returns a new collection containing the items that would be present on a given page number:
collection = Collection([1, 2, 3, 4, 5, 6, 7, 8, 9])
chunk = collection.for_page(2, 3)
chunk.all()
# 4, 5, 6
The method requires the page number and the number of items to show per page, respectively.
The get
method returns the item at a given key. If the key does not exist, None
is returned:
collection = Collection([1, 2, 3])
collection.get(3)
# None
You can optionally pass a default value as the second argument:
collection = Collection([1, 2, 3])
collection.get(3, 'default-value')
# default-value
The implode
method joins the items in a collection. Its arguments depend on the type of items in the collection.
If the collection contains dictionaries or objects, you must pass the key of the attributes you wish to join, and the "glue" string you wish to place between the values:
collection = Collection([
{'account_id': 1, 'product': 'Desk'},
{'account_id': 2, 'product': 'Chair'}
])
collection.implode('product', ', ')
# Desk, Chair
If the collection contains simple strings, simply pass the "glue" as the only argument to the method:
collection = Collection(['foo', 'bar', 'baz'])
collection.implode('-')
# foo-bar-baz
The is_empty
method returns True
if the collection is empty; otherwise, False
is returned:
Collection([]).is_empty()
# True
The last
method returns the last element in the collection that passes a given truth test:
collection = Collection([1, 2, 3, 4])
last = collection.last(lambda item: item < 3)
# 2
You can also call the last
method with no arguments to get the last element in the collection. If the collection is empty, None
is returned:
collection.last()
# 4
The map
method iterates through the collection and passes each value to the given callback. The callback is free to modify the item and return it, thus forming a new collection of modified items:
collection = Collection([1, 2, 3, 4])
multiplied = collection.map(lambda item: item * 2)
multiplied.all()
# [2, 4, 6, 8]
Warning
Like most other collection methods, map
returns a new Collection
instance; it does not modify the collection it is called on. If you want to transform the original collection, use the transform method.
The merge method merges the given list into the collection:
collection = Collection(['Desk', 'Chair'])
collection.merge(['Bookcase', 'Door'])
collection.all()
# ['Desk', 'Chair', 'Bookcase', 'Door']
Warning
Unlike most other collection methods, merge
does not return a new modified collection; it modifies the collection it is called on.
The pluck
method retrieves all of the collection values for a given key:
collection = Collection([
{'product_id': 1, 'product': 'Desk'},
{'product_id': 2, 'product': 'Chair'}
])
plucked = collection.pluck('product')
plucked.all()
# ['Desk', 'Chair']
You can also specify how you wish the resulting collection to be keyed:
plucked = collection.pluck('name', 'product_id')
plucked
# {1: 'Desk', 2: 'Chair'}
The pop
method removes and returns the last item from the collection:
collection = Collection([1, 2, 3, 4, 5])
collection.pop()
# 5
collection.all()
# [1, 2, 3, 4]
The prepend
method adds an item to the beginning of the collection:
collection = Collection([1, 2, 3, 4])
collection.prepend(0)
collection.all()
# [0, 1, 2, 3, 4]
The pull
method removes and returns an item from the collection by its key:
collection = Collection([1, 2, 3, 4])
collection.pull(1)
collection.all()
# [1, 3, 4]
The push
(or append
) method appends an item to the end of the collection:
collection = Collection([1, 2, 3, 4])
collection.push(5)
collection.all()
# [1, 2, 3, 4, 5]
The put
method sets the given key and value in the collection:
collection = Collection([1, 2, 3, 4])
collection.put(1, 5)
collection.all()
# [1, 5, 3, 4]
Note
It is equivalent to:
collection[1] = 5
The reduce
method reduces the collection to a single value, passing the result of each iteration into the subsequent iteration:
collection = Collection([1, 2, 3])
collection.reduce(lambda result, item: (result or 0) + item)
# 6
The value for result
on the first iteration is None
; however, you can specify its initial value by passing a second argument to reduce:
collection.reduce(lambda result, item: result + item, 4)
# 10
The reject
method filters the collection using the given callback. The callback should return True
for any items it wishes to remove from the resulting collection:
collection = Collection([1, 2, 3, 4])
filtered = collection.reject(lambda item: item > 2)
filtered.all()
# [1, 2]
For the inverse of reject
, see the filter method.
The reverse
method reverses the order of the collection's items:
collection = Collection([1, 2, 3, 4, 5])
reverse = collection.reverse()
reverse.all()
# [5, 4, 3, 2, 1]
The serialize
method converts the collection into a list
. If the collection's values are ORM
models, the models will also be converted to dictionaries:
collection = Collection([User.find(1)])
collection.serialize()
# [{'id': 1, 'name': 'John'}]
Warning
serialize
also converts all of its nested objects. If you want to get the underlying items as is, use the all method instead.
The shift
method removes and returns the first item from the collection:
collection = Collection([1, 2, 3, 4, 5])
collection.shift()
# 1
collection.all()
# [2, 3, 4, 5]
The sort
method sorts the collection:
collection = Collection([5, 3, 1, 2, 4])
sorted = collection.sort()
sorted.all()
# [1, 2, 3, 4, 5]
The sum
method returns the sum of all items in the collection:
Collection([1, 2, 3, 4, 5]).sum()
# 15
If the collection contains dictionaries or objects, you must pass a key to use for determining which values to sum:
collection = Collection([
{'name': 'JavaScript: The Good Parts', 'pages': 176},
{'name': 'JavaScript: The Defnitive Guide', 'pages': 1096}
])
collection.sum('pages')
# 1272
In addition, you can pass your own callback to determine which values of the collection to sum:
collection = Collection([
{'name': 'Chair', 'colors': ['Black']},
{'name': 'Desk', 'colors': ['Black', 'Mahogany']},
{'name': 'Bookcase', 'colors': ['Red', 'Beige', 'Brown']}
])
collection.sum(lambda product: len(product['colors']))
# 6
The take
method returns a new collection with the specified number of items:
collection = Collection([0, 1, 2, 3, 4, 5])
chunk = collection.take(3)
chunk.all()
# [0, 1, 2]
You can also pass a negative integer to take the specified amount of items from the end of the collection:
chunk = collection.chunk(-2)
chunk.all()
# [4, 5]
The to_json
method converts the collection into JSON:
collection = Collection([{'name': 'Desk', 'price': 200}])
collection.to_json()
# '[{"name": "Desk", "price": 200}]'
The transform
method iterates over the collection and calls the given callback with each item in the collection. The items in the collection will be replaced by the values returned by the callback:
collection = Collection([1, 2, 3, 4, 5])
collection.transform(lambda item: item * 2)
collection.all()
# [2, 4, 6, 8, 10]
Warning
Unlike most other collection methods, transform
modifies the collection itself. If you wish to create a new collection instead, use the map method.
The unique
method returns all of the unique items in the collection:
collection = Collection([1, 1, 2, 2, 3, 4, 2])
unique = collection.unique()
unique.all()
# [1, 2, 3, 4]
When dealing with dictionaries or objects, you can specify the key used to determine uniqueness:
collection = Collection([
{'name': 'iPhone 6', 'brand': 'Apple', 'type': 'phone'},
{'name': 'iPhone 5', 'brand': 'Apple', 'type': 'phone'},
{'name': 'Apple Watch', 'brand': 'Apple', 'type': 'watch'},
{'name': 'Galaxy S6', 'brand': 'Samsung', 'type': 'phone'},
{'name': 'Galaxy Gear', 'brand': 'Samsung', 'type': 'watch'}
])
unique = collection.unique('brand')
unique.all()
# [
# {'name': 'iPhone 6', 'brand': 'Apple', 'type': 'phone'},
# {'name': 'Galaxy S6', 'brand': 'Samsung', 'type': 'phone'}
# ]
You can also pass your own callback to determine item uniqueness:
unique = collection.unique(lambda item: item['brand'] + item['type'])
unique.all()
# [
# {'name': 'iPhone 6', 'brand': 'Apple', 'type': 'phone'},
# {'name': 'Apple Watch', 'brand': 'Apple', 'type': 'watch'},
# {'name': 'Galaxy S6', 'brand': 'Samsung', 'type': 'phone'},
# {'name': 'Galaxy Gear', 'brand': 'Samsung', 'type': 'watch'}
# ]
The where
method filters the collection by a given key / value pair:
collection = Collection([
{'name': 'Desk', 'price': 200},
{'name': 'Chair', 'price': 100},
{'name': 'Bookcase', 'price': 150},
{'name': 'Door', 'price': 100},
])
filtered = collection.where('price', 100)
filtered.all()
# [
# {'name': 'Chair', 'price': 100},
# {'name': 'Door', 'price': 100}
# ]
The zip
method merges together the values of the given list with the values of the collection at the corresponding index:
collection = Collection(['Chair', 'Desk'])
zipped = collection.zip([100, 200])
zipped.all()
# [('Chair', 100), ('Desk', 200)]