-
Download datasets 300W-LP, AFLW2000 [1]; AFLW [2]; BIWI [3] and extract its to
data/
. Folder should be looks like:data/ 300W_LP.json AFLW.json AFLW2000.json BIWI.json 300W_LP/ AFW/ AFW_134212_1_0.jpg AFW_134212_1_0.mat ... ... AFLW/ data/ flickr/ 0/ image00002.jpg image00013.jpg ... 2/ 3/ aflw.sqlite AFLW2000/ image00002.jpg image00002.mat ... BIWI/ hpdb/ 01/ frame_00003_rgb.png frame_00003_pose.txt ... 02/ ... 24/
[1] 300W-LP and AFLW2000 datasets: http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm
[2] AFLW dataset: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/
[3] BIWI Kinect Head Pose dataset: https://icu.ee.ethz.ch/research/datsets.html
-
Install python modules:
pip3 install -r requirements.txt
Download the models from the link and place them in the models/
folder.
Folder should be looks like:
models/
ap1/
resnet18.pth
resnet34.pth
resnet50.pth
resnet101.pth
resnet152.pth
ap2/
resnet18.pth
resnet34.pth
resnet50.pth
resnet101.pth
resnet152.pth
ap3/
resnet18.pth
resnet34.pth
resnet50.pth
resnet101.pth
resnet152.pth
For evaluation use script src/main.py
:
python3 src/main.py --protocol 1 --arch resnet50
Available protocols:
1
:AFLW2000
andBIWI
2
:AFLW-test
subset3
:BIWI-test
subset
Available architectures:
resnet18
resnet34
resnet50
resnet101
resnet152
Folder data/
contains couple of JSON files with bounding box labeling.
These files have following format:
{
"filename": [
{"bbox": [x_min, y_min, x_max, y_max], "type"?: "train|test", ...},
...
]
}
TBD