/kd_oe_hpe

Primary LanguagePythonOtherNOASSERTION

Preparing

  1. Download datasets 300W-LP, AFLW2000 [1]; AFLW [2]; BIWI [3] and extract its to data/. Folder should be looks like:

    data/
        300W_LP.json
        AFLW.json
        AFLW2000.json
        BIWI.json
        300W_LP/
            AFW/
                AFW_134212_1_0.jpg
                AFW_134212_1_0.mat
                ...
            ...
        AFLW/
            data/
                flickr/
                    0/
                        image00002.jpg
                        image00013.jpg
                        ...
                    2/
                    3/
            aflw.sqlite
        AFLW2000/
            image00002.jpg
            image00002.mat
            ...
        BIWI/
            hpdb/
                01/
                    frame_00003_rgb.png
                    frame_00003_pose.txt
                    ...
                02/
                ...
                24/
    

    [1] 300W-LP and AFLW2000 datasets: http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm

    [2] AFLW dataset: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/

    [3] BIWI Kinect Head Pose dataset: https://icu.ee.ethz.ch/research/datsets.html

  2. Install python modules:

    pip3 install -r requirements.txt
    

Evaluation

Download the models from the link and place them in the models/ folder. Folder should be looks like:

models/
    ap1/
        resnet18.pth
        resnet34.pth
        resnet50.pth
        resnet101.pth
        resnet152.pth
    ap2/
        resnet18.pth
        resnet34.pth
        resnet50.pth
        resnet101.pth
        resnet152.pth
    ap3/
        resnet18.pth
        resnet34.pth
        resnet50.pth
        resnet101.pth
        resnet152.pth

For evaluation use script src/main.py:

python3 src/main.py --protocol 1 --arch resnet50

Available protocols:

  • 1 : AFLW2000 and BIWI
  • 2 : AFLW-test subset
  • 3 : BIWI-test subset

Available architectures:

  • resnet18
  • resnet34
  • resnet50
  • resnet101
  • resnet152

Bounding box labeling

Folder data/ contains couple of JSON files with bounding box labeling. These files have following format:

{
    "filename": [
        {"bbox": [x_min, y_min, x_max, y_max], "type"?: "train|test", ...},
        ...
    ]
}

Citing

TBD