A Deep Learning Prediction Task Supported by PaddlePaddle
-
Construct a easy Graph model by combine the adjacent nodes together
- Collect spatio information from
graph.csv
, then construct a Center- MultiOrder-Adjacent Nodes Model (中心-多阶邻接节点图模型) - MultiOrder adjacent nodes can lengthen the predicting period
- Collect spatio information from
-
ResLSTM (Residual Long Short Term Memory)
- Inpired by ResNet(which can deepen the neural network to more than 150 layers) (Deep Residual Network)
- LSTM can deal with time sequence well
- Residual can contribute to the loss and reasonable gradient
-
Construct the full network
go to the PaddlePaddle documentation
cd data
- get point list for training (Graph Constructing)
points_to_point()
get_points_count_list_2()
- remove zeros
split_data.split_by_remove_some_timestamps('speeds.csv',[(from_time, to_time)],'speed_nzero.csv')
- validation set
split_data.split_out(filename, [(from_time, to_time)],[output filenames])
- test data
split_data.get_test_data('test_speeds.csv', 'train_speeds.csv', 'speed_no_valid.csv', [(from_time, to_time)]) dataset = create_dataset('test_speeds.csv')
- create data set
dataset = create_dataset('test_speeds.csv')
get_speed_data_2(dataset, 'test')
dataset = create_dataset('train_speeds.csv')
get_speed_data_2(dataset, 'train')
dataset = create_dataset('speeds_without_zero.csv')
get_predict_data_2(dataset)
dataset = create_dataset('VadiationSet/419_6_10.csv')
get_predict_valid(dataset)
sh run.sh
- End-to-End trainable
- Maybe high accuracy :)
- Generalization ability and robustness
- make full use of data provided
- training speed
- Framework (PaddlePaddle) is too slow and stupid
This project is under the Apache-2.0