Run this Google Colab.
or
notebook in demo/density_softmax.ipynyb
or
python file (full comparision, install prerequisite packages first to import library):
python demo/demo.py
Install prerequisite packages:
pip install "git+https://github.com/google/uncertainty-baselines.git#egg=uncertainty_baselines"
and
bash setup.sh
python <method_file> --data_dir=<data_path> --output_dir=<output_path> --use_gpu="True" --num_cores="1"
where the parameters are the following:
<method_file>
: file stored the code of method. E.g.,<method_file> = baselines/cifar/density_softmax.py
<data_path>
: path stored the dataset. E.g.,<data_path> = "tmp/tensorflow_datasets"
<output_path>
: path to store outputs of the model. E.g.,<output_path> = "tmp/cifar10/density_softmax"
Based on code of: "Uncertainty Baselines: Benchmarks for uncertainty & robustness in deep learning"
Z. Nado, N. Band, M. Collier, J. Djolonga, M. Dusenberry, S. Farquhar, A. Filos, M. Havasi, R. Jenatton, G. Jerfel, J. Liu, Z. Mariet, J. Nixon, S. Padhy, J. Ren, T. Rudner, Y. Wen, F. Wenzel, K. Murphy, D. Sculley, B. Lakshminarayanan, J. Snoek, Y. Gal, and D. Tran. Uncertainty Baselines: Benchmarks for uncertainty & robustness in deep learning, arXiv preprint arXiv:2106.04015, 2021.
This source code is released under the Apache-2.0 license, included here.