Production-ready Model Context Protocol server for task and todo management with dual storage backends, error handling, and modern Python tooling.
- Dual Storage: File-based JSON or database (SQLite/PostgreSQL)
- Todo Management: Standalone todos and structured tasks with priorities/due dates
- Bulk Operations: Efficient multi-item management and analytics
- Security: Input validation, error handling, containerization
- Modern Tooling: uv package manager, comprehensive testing, structured logging
MCP Server → Business Logic → Storage (File/Database) → Infrastructure
# Clone and install
git clone https://github.com/AnoRebel/mcp-todo-server.git
cd mcp-todo-server
uv sync # or pip install -r requirements.txt
# Run with file storage (default)
uv run python server.py
# Run with database storage
export MCP_STORAGE_TYPE=database
export MCP_DATABASE_URL=sqlite:///todos.db
uv run python server.py
# Docker
docker-compose up -d
# Development
make test && make formatEnvironment variables:
MCP_STORAGE_TYPE:fileordatabase(default: file)MCP_DATABASE_URL: Database connection stringMCP_LOG_LEVEL: DEBUG, INFO, WARNING, ERRORMCP_MAX_TASKS: Maximum tasks (default: 1000)MCP_MAX_TODOS: Maximum todos (default: 1000)
# Standalone todos
add_todo("Buy groceries")
list_todos(status="open")
complete_todo("todo-id")
# Structured tasks
create_task(name="Project", priority="high", due_date="2024-12-31")
add_task_todo("task-id", "Subtask description")
bulk_task_operation(operation="complete", filters={"priority": "low"})
# Analytics
get_productivity_stats()- Circuit breaker pattern for failure prevention
- Automatic retry with exponential backoff
- Categorized errors with user-friendly messages
- Comprehensive logging and monitoring
make test # All tests with coverage
pytest tests/ -v # Verbose test outputCoverage includes storage backends, CRUD operations, error handling, and data models.
- Input validation and sanitization
- Container security (non-root execution)
- Database connection pooling and atomic operations
- Configurable limits and graceful degradation
- Structured logging for observability
docker-compose up -d # File storage
docker-compose --profile database up -d # With PostgreSQLapiVersion: apps/v1
kind: Deployment
metadata:
name: mcp-todo-server
spec:
replicas: 3
template:
spec:
containers:
- name: mcp-todo-server
image: mcp-todo-server:latest
env:
- name: MCP_STORAGE_TYPE
value: "database"
- name: MCP_DATABASE_URL
valueFrom:
secretKeyRef:
name: db-secret
key: url{
"mcpServers": {
"todo-manager": {
"command": "python",
"args": ["/path/to/server.py"],
"env": {
"MCP_STORAGE_TYPE": "file",
"MCP_DATA_DIR": "/Users/username/.claude_todos"
}
}
}
}mcp-todo-server/
├── server.py # Main server
├── config.py # Configuration
├── models/ # Data models
├── storage/ # Storage backends
├── tests/ # Test suite
├── docker-compose.yml # Container setup
└── requirements.txt # Dependencies
- Fork and create feature branch
- Add tests and follow PEP 8
- Run
make test && make format - Submit PR with clear description
Storage Comparison:
- File: Simple, <1000 items recommended
- Database: Scalable, concurrent access, millions of items
Benchmarks:
| Operation | File | SQLite | PostgreSQL |
|---|---|---|---|
| Add Todo | 5ms | 2ms | 3ms |
| List 100 | 15ms | 5ms | 8ms |
MIT License - see LICENSE file.
- GitHub Issues for bugs/features
- Email: hacker4rebel@gmail.com
Built with ❤️ following MCP best practices