Fs3c is built on FsDet.
Requirements
- Linux with Python >= 3.6
- PyTorch >= 1.3
- torchvision that matches the PyTorch installation
- Dependencies:
pip install -r requirements.txt
- pycocotools:
pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
- fvcore:
pip install 'git+https://github.com/facebookresearch/fvcore'
- OpenCV, optional, needed by demo and visualization
pip install opencv-python
- GCC >= 4.9
Build Fs3c
python setup.py build develop
Note: you may need to rebuild Fs3c after reinstalling a different build of PyTorch.
See datasets/README.md for more details.
###Training & Evaluation For more detailed instructions on the training procedure, see TRAIN_INST.md. To evaluate the trained models, run
python tools/test_net.py --num-gpus 8 \
--config-file configs/PascalVOC-detection/split1/faster_rcnn_R_101_FPN_ft_all1_1shot.yaml \
--eval-only
You can use tools/run_experiments.py
to do the training and evaluation. For example, to experiment on 30 seeds of the first split of PascalVOC on all shots, run
python tools/run_experiments.py --num-gpus 8 \
--shots 1 2 3 5 10 --seeds 0 30 --split 1
After training and evaluation, you can use tools/aggregate_seeds.py
to aggregate the results over all the seeds to obtain one set of numbers. To aggregate the 3-shot results of the above command, run
python tools/aggregate_seeds.py --shots 3 --seeds 30 --split 1 \
--print --plot