/Voyager

An Open-Ended Embodied Agent with Large Language Models

Primary LanguagePythonMIT LicenseMIT

Voyager: An Open-Ended Embodied Agent with Large Language Models

[Website] [Arxiv] [PDF]

Python Version GitHub license


voyager.mp4

We introduce Voyager, the first LLM-powered embodied lifelong learning agent in Minecraft that continuously explores the world, acquires diverse skills, and makes novel discoveries without human intervention. Voyager consists of three key components: 1) an automatic curriculum that maximizes exploration, 2) an ever-growing skill library of executable code for storing and retrieving complex behaviors, and 3) a new iterative prompting mechanism that incorporates environment feedback, execution errors, and self-verification for program improvement. Voyager interacts with GPT-4 via blackbox queries, which bypasses the need for model parameter fine-tuning. The skills developed by Voyager are temporally extended, interpretable, and compositional, which compounds the agent’s abilities rapidly and alleviates catastrophic forgetting. Empirically, Voyager shows strong in-context lifelong learning capability and exhibits exceptional proficiency in playing Minecraft. It obtains 3.3× more unique items, travels 2.3× longer distances, and unlocks key tech tree milestones up to 15.3× faster than prior SOTA. Voyager is able to utilize the learned skill library in a new Minecraft world to solve novel tasks from scratch, while other techniques struggle to generalize.

In this repo, we provide Voyager code. This codebase is under MIT License.

Installation

Voyager requires Python ≥ 3.9 and Node.js ≥ 16.13.0. We have tested on Ubuntu 20.04, Windows 11, and macOS. You need to follow the instructions below to install Voyager.

Python Install

git clone https://github.com/MineDojo/Voyager
cd Voyager
pip install -e .

Node.js Install

In addition to the Python dependencies, you need to install the following Node.js packages:

cd voyager/env/mineflayer
npm install -g npx
npm install
cd mineflayer-collectblock
npx tsc
cd ..
npm install

Minecraft Instance Install

Voyager depends on Minecraft game. You need to install Minecraft game and set up a Minecraft instance.

Follow the instructions in Minecraft Login Tutorial to set up your Minecraft Instance.

Fabric Mods Install

You need to install fabric mods to support all the features in Voyager. Remember to use the correct Fabric version of all the mods.

Follow the instructions in Fabric Mods Install to install the mods.

Getting Started

Voyager uses OpenAI's GPT-4 as the language model. You need to have an OpenAI API key to use Voyager. You can get one from here.

After the installation process, you can run Voyager by:

from voyager import Voyager

# you can also use mc_port instead of azure_login, but azure_login is highly recommended
azure_login = {
    "client_id": "YOUR_CLIENT_ID",
    "redirect_url": "https://127.0.0.1/auth-response",
    "secret_value": "[OPTIONAL] YOUR_SECRET_VALUE",
    "version": "fabric-loader-0.14.18-1.19", # the version Voyager is tested on
}
openai_api_key = "YOUR_API_KEY"

voyager = Voyager(
    azure_login=azure_login,
    openai_api_key=openai_api_key,
)

# start lifelong learning
voyager.learn()
  • If you are running with Azure Login for the first time, it will ask you to follow the command line instruction to generate a config file.
  • For Azure Login, you also need to select the world and open the world to LAN by yourself. After you run voyager.learn() the game will pop up soon, you need to:
    1. Select Singleplayer and press Create New World.
    2. Set Game Mode to Creative and Difficulty to Peaceful.
    3. After the world is created, press Esc key and press Open to LAN.
    4. Select Allow cheats: ON and press Start LAN World. You will see the bot join the world soon.

Paper and Citation

If you find our work useful, please consider citing us!

@article{wang2023voyager,
  title   = {Voyager: An Open-Ended Embodied Agent with Large Language Models},
  author  = {Guanzhi Wang and Yuqi Xie and Yunfan Jiang and Ajay Mandlekar and Chaowei Xiao and Yuke Zhu and Linxi Fan and Anima Anandkumar},
  year    = {2023},
  journal = {arXiv preprint arXiv: Arxiv-2305.16291}
}

Disclaimer: This project is strictly for research purposes, and not an official product from NVIDIA.