Using BERT pre-trained model embeddings for EmbedRank for unsupervised keyword extraction.
create conda environment with python 3.7 version
conda create --name keyword_extraction python=3.7
Activate environment
conda activate keyword_extraction
Install requirements
sh install_dependencies.sh
List of released pretrained BERT models (click to expand...)
BERT-Base, Uncased | 12-layer, 768-hidden, 12-heads, 110M parameters |
BERT-Large, Uncased | 24-layer, 1024-hidden, 16-heads, 340M parameters |
BERT-Base, Cased | 12-layer, 768-hidden, 12-heads , 110M parameters |
BERT-Large, Cased | 24-layer, 1024-hidden, 16-heads, 340M parameters |
BERT-Base, Multilingual Cased (New) | 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters |
BERT-Base, Multilingual Cased (Old) | 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters |
BERT-Base, Chinese | Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters |
wget https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
unzip cased_L-12_H-768_A-12.zip
sh run_bert_service.sh
import spacy
from bert_serving.client import BertClient
from model.embedrank_transformers import EmbedRankTransformers
if __name__ == '__main__':
bc = BertClient(output_fmt='list')
nlp = spacy.load("en_core_web_lg", disable=['ner'])
fi = EmbedRankTransformers(nlp=nlp,
dnn=bc,
perturbation='replacement',
emb_method='subtraction',
mmr_beta=0.55,
top_n=10,
alias_threshold=0.8)
text = """
Evaluation of existing and new feature recognition algorithms. 2. Experimental
results
For pt.1 see ibid., p.839-851. This is the second of two papers investigating
the performance of general-purpose feature detection techniques. The
first paper describes the development of a methodology to synthesize
possible general feature detection face sets. Six algorithms resulting
from the synthesis have been designed and implemented on a SUN
Workstation in C++ using ACIS as the geometric modelling system. In
this paper, extensive tests and comparative analysis are conducted on
the feature detection algorithms, using carefully selected components
from the public domain, mostly from the National Design Repository. The
results show that the new and enhanced algorithms identify face sets
that previously published algorithms cannot detect. The tests also show
that each algorithm can detect, among other types, a certain type of
feature that is unique to it. Hence, most of the algorithms discussed
in this paper would have to be combined to obtain complete coverage
"""
marked_target, keywords, keyword_relevance = fi.fit(text)
print(marked_target)
print(f'Keywords: {keywords}')
print(f'Keyword Relevance: {keyword_relevance}')
print(fi.extract_keywords(text))
You can evaluate model on many different datasets using script bellow. See here for mode details. (WARNING: if run_evaluation fails line 149, in build_printable
printable[qrel] = pd.DataFrame(raw, columns=['app', *(table.columns.levels[1].get_values())[:-1]]) please replace .get_values()
method with .values
or downgrade pandas to some version that has it)
python -m run_evaluation
Evaluation on Inspec
Models | F1_10 | F1_15 | F1_5 | F1_all | P_10 | P_15 | P_5 | map_10 | map_15 | map_5 | map_all | recall_10 | recall_15 | recall_5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | RAKE | 0.206600 bl | 0.220100 bl | 0.152400 bl | 0.220100 bl | 0.250400 bl | 0.216900 bl | 0.282300 bl | 0.100100 bl | 0.115100 bl | 0.070500 bl | 0.115100 bl | 0.188100 bl | 0.236900 bl | 0.110300 bl |
1 | YAKE | 0.176300 ▼ | 0.187800 ▼ | 0.144500 ▼ | 0.187800 ▼ | 0.208300 ▼ | 0.181400 ▼ | 0.261700 ▼ | 0.092000 ▼ | 0.104000 ▼ | 0.072700 | 0.104000 ▼ | 0.165800 ▼ | 0.214100 ▼ | 0.105400 ᐁ |
2 | MultiPartiteRank | 0.186600 ▼ | 0.201300 ▼ | 0.156000 | 0.201300 ▼ | 0.221000 ▼ | 0.190600 ▼ | 0.285600 | 0.101700 | 0.114100 | 0.081100 ▲ | 0.114100 | 0.171200 ▼ | 0.216600 ▼ | 0.113000 |
3 | TopicalPageRank | 0.226800 ▲ | 0.241000 ▲ | 0.174100 ▲ | 0.241000 ▲ | 0.272700 ▲ | 0.233700 ▲ | 0.319600 ▲ | 0.116500 ▲ | 0.133500 ▲ | 0.084200 ▲ | 0.133500 ▲ | 0.206600 ▲ | 0.257900 ▲ | 0.126100 ▲ |
4 | TopicRank | 0.177900 ▼ | 0.186800 ▼ | 0.149000 | 0.186800 ▼ | 0.211100 ▼ | 0.175300 ▼ | 0.272300 | 0.093800 ▼ | 0.103000 ▼ | 0.075100 ᐃ | 0.103000 ▼ | 0.161300 ▼ | 0.195600 ▼ | 0.107800 |
5 | SingleRank | 0.224200 ▲ | 0.237900 ▲ | 0.170900 ▲ | 0.237900 ▲ | 0.269600 ▲ | 0.231400 ▲ | 0.313500 ▲ | 0.114400 ▲ | 0.131200 ▲ | 0.082600 ▲ | 0.131200 ▲ | 0.204800 ▲ | 0.256300 ▲ | 0.123800 ▲ |
6 | TextRank | 0.123500 ▼ | 0.127200 ▼ | 0.097500 ▼ | 0.127200 ▼ | 0.140900 ▼ | 0.106500 ▼ | 0.177800 ▼ | 0.050600 ▼ | 0.052900 ▼ | 0.040900 ▼ | 0.052900 ▼ | 0.102100 ▼ | 0.113100 ▼ | 0.068900 ▼ |
7 | KPMiner | 0.013400 ▼ | 0.013400 ▼ | 0.013300 ▼ | 0.013400 ▼ | 0.011700 ▼ | 0.007800 ▼ | 0.022900 ▼ | 0.006600 ▼ | 0.006600 ▼ | 0.006600 ▼ | 0.006600 ▼ | 0.008400 ▼ | 0.008400 ▼ | 0.008200 ▼ |
8 | TFIDF | 0.135900 ▼ | 0.153800 ▼ | 0.100400 ▼ | 0.153800 ▼ | 0.157100 ▼ | 0.146000 ▼ | 0.176400 ▼ | 0.059300 ▼ | 0.069900 ▼ | 0.043900 ▼ | 0.069900 ▼ | 0.129700 ▼ | 0.178100 ▼ | 0.074100 ▼ |
9 | KEA | 0.123000 ▼ | 0.134900 ▼ | 0.095200 ▼ | 0.134900 ▼ | 0.142700 ▼ | 0.128700 ▼ | 0.166600 ▼ | 0.053600 ▼ | 0.061300 ▼ | 0.041300 ▼ | 0.061300 ▼ | 0.117400 ▼ | 0.156100 ▼ | 0.070500 ▼ |
10 | EmbedRank | 0.258400 ▲ | 0.275100 ▲ | 0.204900 ▲ | 0.275100 ▲ | 0.314700 ▲ | 0.266800 ▲ | 0.384200 ▲ | 0.144400 ▲ | 0.165200 ▲ | 0.106200 ▲ | 0.165200 ▲ | 0.231900 ▲ | 0.288500 ▲ | 0.146700 ▲ |
11 | SIFRank | 0.265200 ▲ | 0.276800 ▲ | 0.198700 ▲ | 0.276800 ▲ | 0.323000 ▲ | 0.270800 ▲ | 0.368300 ▲ | 0.143600 ▲ | 0.163800 ▲ | 0.099900 ▲ | 0.163800 ▲ | 0.238500 ▲ | 0.291400 ▲ | 0.143100 ▲ |
12 | SIFRankPlus | 0.257700 ▲ | 0.275000 ▲ | 0.197100 ▲ | 0.275000 ▲ | 0.311500 ▲ | 0.268300 ▲ | 0.364000 ▲ | 0.142700 ▲ | 0.164400 ▲ | 0.102400 ▲ | 0.164400 ▲ | 0.233000 ▲ | 0.290300 ▲ | 0.142200 ▲ |
13 | EmbedRankBERT | 0.226400 ▲ | 0.226400 ▲ | 0.169800 ▲ | 0.226400 ▲ | 0.271900 ▲ | 0.181300 ▼ | 0.314700 ▲ | 0.112900 ▲ | 0.112900 | 0.081100 ▲ | 0.112900 | 0.202800 ▲ | 0.202800 ▼ | 0.122500 ▲ |
14 | EmbedRankSentenceBERT | 0.237200 ▲ | 0.246900 ▲ | 0.191500 ▲ | 0.246900 ▲ | 0.288100 ▲ | 0.235500 ▲ | 0.357800 ▲ | 0.130400 ▲ | 0.144800 ▲ | 0.097800 ▲ | 0.144800 ▲ | 0.214700 ▲ | 0.257000 ▲ | 0.137700 ▲ |
Evaluation on SemEval2017
Models | F1_10 | F1_15 | F1_5 | F1_all | P_10 | P_15 | P_5 | map_10 | map_15 | map_5 | map_all | recall_10 | recall_15 | recall_5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | RAKE | 0.216700 bl | 0.246500 bl | 0.140200 bl | 0.246500 bl | 0.299600 bl | 0.272200 bl | 0.309500 bl | 0.093700 bl | 0.114600 bl | 0.058200 bl | 0.114600 bl | 0.179000 bl | 0.240200 bl | 0.093700 bl |
1 | YAKE | 0.171900 ▼ | 0.199500 ▼ | 0.114000 ▼ | 0.199500 ▼ | 0.235900 ▼ | 0.219300 ▼ | 0.249100 ▼ | 0.073400 ▼ | 0.088400 ▼ | 0.049900 ▼ | 0.088400 ▼ | 0.143300 ▼ | 0.196300 ▼ | 0.076600 ▼ |
2 | MultiPartiteRank | 0.213100 | 0.238600 | 0.161600 ▲ | 0.238600 | 0.297000 | 0.264200 | 0.358600 ▲ | 0.106400 ▲ | 0.125700 ᐃ | 0.077000 ▲ | 0.125700 ᐃ | 0.175600 | 0.231900 | 0.108100 ▲ |
3 | TopicalPageRank | 0.253100 ▲ | 0.289400 ▲ | 0.173000 ▲ | 0.289400 ▲ | 0.350900 ▲ | 0.319300 ▲ | 0.382200 ▲ | 0.124600 ▲ | 0.152900 ▲ | 0.081500 ▲ | 0.152900 ▲ | 0.208700 ▲ | 0.281400 ▲ | 0.115900 ▲ |
4 | TopicRank | 0.203300 ᐁ | 0.222400 ▼ | 0.159600 ▲ | 0.222400 ▼ | 0.285600 | 0.247600 ▼ | 0.357800 ▲ | 0.100500 | 0.116500 | 0.075300 ▲ | 0.116500 | 0.166300 ᐁ | 0.213400 ▼ | 0.106200 ▲ |
5 | SingleRank | 0.248100 ▲ | 0.286300 ▲ | 0.170000 ▲ | 0.286300 ▲ | 0.343800 ▲ | 0.316400 ▲ | 0.373200 ▲ | 0.120700 ▲ | 0.149300 ▲ | 0.078600 ▲ | 0.149300 ▲ | 0.204500 ▲ | 0.278000 ▲ | 0.114000 ▲ |
6 | TextRank | 0.132800 ▼ | 0.149300 ▼ | 0.091300 ▼ | 0.149300 ▼ | 0.185000 ▼ | 0.158400 ▼ | 0.206500 ▼ | 0.050100 ▼ | 0.057100 ▼ | 0.035400 ▼ | 0.057100 ▼ | 0.107000 ▼ | 0.134700 ▼ | 0.060700 ▼ |
7 | KPMiner | 0.032200 ▼ | 0.032200 ▼ | 0.032000 ▼ | 0.032200 ▼ | 0.034100 ▼ | 0.022900 ▼ | 0.066900 ▼ | 0.016300 ▼ | 0.016400 ▼ | 0.016100 ▼ | 0.016400 ▼ | 0.018900 ▼ | 0.019100 ▼ | 0.018700 ▼ |
8 | TFIDF | 0.166900 ▼ | 0.180200 ▼ | 0.131500 | 0.180200 ▼ | 0.235500 ▼ | 0.200900 ▼ | 0.297400 | 0.076700 ▼ | 0.087500 ▼ | 0.058100 | 0.087500 ▼ | 0.137200 ▼ | 0.175400 ▼ | 0.087600 |
9 | KEA | 0.151800 ▼ | 0.160200 ▼ | 0.122200 ▼ | 0.160200 ▼ | 0.214000 ▼ | 0.178400 ▼ | 0.276300 ᐁ | 0.069400 ▼ | 0.077400 ▼ | 0.053800 | 0.077400 ▼ | 0.124700 ▼ | 0.156200 ▼ | 0.081600 ▼ |
10 | EmbedRank | 0.252200 ▲ | 0.286200 ▲ | 0.182300 ▲ | 0.286200 ▲ | 0.352300 ▲ | 0.316800 ▲ | 0.406500 ▲ | 0.131800 ▲ | 0.158600 ▲ | 0.090600 ▲ | 0.158600 ▲ | 0.206800 ▲ | 0.276400 ▲ | 0.121700 ▲ |
11 | SIFRank | 0.286700 ▲ | 0.322300 ▲ | 0.196600 ▲ | 0.322300 ▲ | 0.397200 ▲ | 0.356600 ▲ | 0.431600 ▲ | 0.150300 ▲ | 0.184400 ▲ | 0.097700 ▲ | 0.184400 ▲ | 0.235800 ▲ | 0.311600 ▲ | 0.131700 ▲ |
12 | SIFRankPlus | 0.273400 ▲ | 0.314500 ▲ | 0.189300 ▲ | 0.314500 ▲ | 0.378100 ▲ | 0.347400 ▲ | 0.412600 ▲ | 0.140200 ▲ | 0.174300 ▲ | 0.092300 ▲ | 0.174300 ▲ | 0.225500 ▲ | 0.304800 ▲ | 0.127200 ▲ |
13 | EmbedRankBERT | 0.234000 ▲ | 0.234000 ᐁ | 0.155500 ▲ | 0.234000 ᐁ | 0.324500 ▲ | 0.216400 ▼ | 0.345200 ▲ | 0.105700 ▲ | 0.105700 ᐁ | 0.068700 ▲ | 0.105700 ᐁ | 0.191300 ▲ | 0.191300 ▼ | 0.103800 ▲ |
14 | EmbedRankSentenceBERT | 0.252700 ▲ | 0.281700 ▲ | 0.172100 ▲ | 0.281700 ▲ | 0.351300 ▲ | 0.307600 ▲ | 0.383800 ▲ | 0.122600 ▲ | 0.146400 ▲ | 0.079500 ▲ | 0.146400 ▲ | 0.207600 ▲ | 0.268000 ▲ | 0.114400 ▲ |
7. SIFRank Evaluation scores (evaluation script is taken from original SIFRank repo)
Evaluation results on Inspec
Models | F1.10 | F1.15 | F1.5 | P.10 | P.15 | P.5 | R.10 | R.15 | R.5 | time | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | EmbedRankBERT | 0.3085 | 0.3374 | 0.2191 | 0.3068 | 0.2823 | 0.3248 | 0.3103 | 0.4192 | 0.1653 | 228.411 |
1 | EmbedRankSentenceBERT | 0.3263 | 0.3463 | 0.2539 | 0.3245 | 0.2897 | 0.3764 | 0.3282 | 0.4302 | 0.1916 | 101.341 |
2 | EmbedRank | 0.3271 | 0.339 | 0.2678 | 0.327 | 0.2868 | 0.3973 | 0.3272 | 0.4143 | 0.202 | 29.233 |
3 | SIFRank | 0.3444 | 0.3499 | 0.254 | 0.3437 | 0.2949 | 0.3769 | 0.3451 | 0.4302 | 0.1916 | 264.976 |
4 | SIFRankPlus | 0.3176 | 0.3421 | 0.2408 | 0.317 | 0.2883 | 0.3572 | 0.3182 | 0.4206 | 0.1816 | 265.089 |
Evaluation results on Semeval2017
Models | F1.10 | F1.15 | F1.5 | P.10 | P.15 | P.5 | R.10 | R.15 | R.5 | time | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | EmbedRankTransformers | 0.2211 | 0.2745 | 0.137 | 0.3018 | 0.2957 | 0.3055 | 0.1745 | 0.2562 | 0.0883 | 293.412 |
1 | EmbedRankSentenceBERT | 0.2416 | 0.2863 | 0.1605 | 0.3298 | 0.3084 | 0.3578 | 0.1906 | 0.2672 | 0.1034 | 118.951 |
2 | EmbedRank | 0.2586 | 0.2962 | 0.1807 | 0.3536 | 0.3199 | 0.4037 | 0.2038 | 0.2758 | 0.1164 | 27.3123 |
3 | SIFRank | 0.2917 | 0.3328 | 0.1918 | 0.399 | 0.3592 | 0.4285 | 0.2299 | 0.31 | 0.1236 | 354.831 |
4 | SIFRankPlus | 0.2719 | 0.3185 | 0.1827 | 0.3719 | 0.3438 | 0.4081 | 0.2143 | 0.2966 | 0.1177 | 352.871 |
8. SIFRank Evaluation Scores (From original source) plus my model's score
F1 Scores on N=5
(first N extracted keywords)
Models | Inspec | SemEval2017 | DUC2001 |
---|---|---|---|
TFIDF | 11.28 | 12.70 | 9.21 |
YAKE | 15.73 | 11.84 | 10.61 |
TextRank | 24.39 | 16.43 | 13.94 |
SingleRank | 24.69 | 18.23 | 21.56 |
TopicRank | 22.76 | 17.10 | 20.37 |
PositionRank | 25.19 | 18.23 | 24.95 |
Multipartite | 23.05 | 17.39 | 21.86 |
RVA | 21.91 | 19.59 | 20.32 |
EmbedRankBERT | 23.31 |
14.60 |
N/A |
EmbedRankSentenceBERT | 25.39 |
16.05 |
N/A |
EmbedRank d2v | 27.20 | 20.21 | 21.74 |
SIFRank | 29.11 | 22.59 | 24.27 |
SIFRank+ | 28.49 | 21.53 | 30.88 |
https://github.com/hanxiao/bert-as-service
https://monkeylearn.com/keyword-extraction/
https://arxiv.org/pdf/1801.04470.pdf
https://github.com/LIAAD/KeywordExtractor-Datasets