BibTeX:
@inproceedings{feng2023score,
title={Score-Based Diffusion Models as Principled Priors for Inverse Imaging},
author={Feng, Berthy T and Smith, Jamie and Rubinstein, Michael and Chang, Huiwen and Bouman, Katherine L and Freeman, William T},
booktitle={International Conference on Computer Vision (ICCV)},
year={2023},
organization={IEEE}
}
This project turns score-based diffusion models into explicit priors for Bayesian inverse problems in imaging. A "score-based prior" allows us to model complex, data-driven posterior distributions while using established sampling and optimization methods (e.g., MCMC, variational inference) that require an explicit log-density function. In our work, we propose a variational-inference approach to posterior sampling, in addition to empirically validating the accuracy and variance of a score prior.
Clone the repo:
git clone https://github.com/berthyf96/score_prior
cd score_prior
git submodule add https://github.com/berthyf96/score_flow
Install dependencies (please open an issue if this does not work out-of-the-box):
sh conda.sh
To train a score-based prior, you first need to train a score-based diffusion model on the desired dataset:
python train.py \
--config configs/score_config.py \
--workdir score_checkpoints/CELEBA_32 \
--config.data.dataset CELEBA \
--config.data.image_size 32 \
--config.data.tfds_dir /tmp/tensorflow_datasets \
--config.training.n_iters 1000000
Once trained, the score-based diffusion model with parameters
Often, our goal is to sample from a posterior
python train_dpi.py \
--score_model_config configs/score_config.py \
--config configs/dpi_config.py \
--workdir dpi_checkpoints/Denoising_CELEBAxCELEBA_32 \
--config.prob_flow.score_model_dir score_checkpoints/CELEBA_32/checkpoints/checkpoint_1000000 \
--config.data.dataset CELEBA \
--config.data.image_size 32 \
--config.data.num_channels 3 \
--config.likelihood.likelihood Denoising \
--config.likelihood.noise_scale 0.2 \
--config.training.batch_size 32 \
--config.training.n_iters 10000 \
--config.training.snapshot_freq 100 \
--config.optim.learning_rate 2e-4 \
--config.optim.grad_clip 1. \
--score_model_config.training.sde vpsde
Replace config.prob_flow.score_model_dir
with the path to your trained score model.
You can also change the forward model by changing config.likelihood
.
Datasets can be added in score_flow/datasets.py
.
Forward models can be added in forward_models.py
.