Basketball Reference Web Scraper

PyPI PyPI - Python Version PyPI - License codecov GitHub Actions - Default Branch

Basketball Reference is a great site (especially for a basketball stats nut like me), and hopefully they don't get too pissed off at me for creating this.

Basically, I created this repository as a utility for another project where I'm trying to estimate an NBA player's productivity as it relates to daily fantasy sports. For that project, I need box score and scheduling information, which is provided by this utility.

Here's the PyPi package.

Installing via pip

I wrote this library as an exercise for creating my first PyPi package.

Hopefully this means that if you'd like to use this library, you can by simply downloading the package via pip like so

pip install basketball_reference_web_scraper

This library requires Python 3.4+ and only supports seasons after the 1999-2000 season

Client

You can import the client like this

# This imports the client
from basketball_reference_web_scraper import client

There are also a couple useful enums that are defined in the data module which can be imported like

# This imports the Team enum
from basketball_reference_web_scraper.data import Team

API

This client has eight methods

  • Getting player box scores by a date (client.player_box_scores)
  • Getting team box scores by a date (client.team_box_scores)
  • Getting the schedule for a season (client.season_schedule)
  • Getting players totals for a season (client.players_season_totals)
  • Getting players advanced season statistics for a season (client.players_advanced_season_totals)
  • Getting regular season box scores for a given player and season (client.regular_season_player_box_scores)
  • Getting the salaries of players of a team for a season (client.team_salaries)
  • Searching (client.search)

You can see all methods used in this replhttps://repl.it/@jaebradley/v300api-examples).

Data output

This client also supports three output types:

  • Python data types (i.e. a list or results)
  • JSON
  • CSV

Versions >=3 of this client outputs CSV to a specified file path and returns JSON output or writes it to a specified file path.

  • Specify an output type by setting the output_type value to OutputType.JSON or OutputType.CSV
    • The default return value of client methods are Python data structures (the box_scores method returns a list of dicts)
  • If you'd like the output to be outputted to a specific file, set the output_file_path variable - for CSV output, this variable must be defined
  • Specifying an output_write_option specifies how the output will be written to the specified file (OutputWriteOption.WRITE corresponds to w)
    • The default write option is OutputWriteOption.WRITE

Data parsing

  • Some pieces of data, like a player's team or the outcome of a game are parsed into enums (for example, the Team and Outcome enums, respectively, for the previous two examples)
  • These enums are serialized to strings when outputting to JSON or CSV, but when dealing with Python data structures, you'll see these enum values.
    • Hopefully, these enums make it easier for the client user to implement team-specific logic, for example.

Get player box scores by date

from basketball_reference_web_scraper import client
from basketball_reference_web_scraper.data import OutputType

# Get all player box scores for January 1st, 2017 
client.player_box_scores(day=1, month=1, year=2017)

# Get all player box scores for January 1st, 2017 in JSON format
client.player_box_scores(day=1, month=1, year=2017, output_type=OutputType.JSON)

# Output all player box scores for January 1st, 2017 in JSON format to 1_1_2017_box_scores.json
client.player_box_scores(day=1, month=1, year=2017, output_type=OutputType.JSON, output_file_path="./1_1_2017_box_scores.json")

# Output all player box scores for January 1st, 2017 in JSON format to 1_1_2017_box_scores.csv
client.player_box_scores(day=1, month=1, year=2017, output_type=OutputType.CSV, output_file_path="./1_1_2017_box_scores.csv")

Get team box scores by date

from basketball_reference_web_scraper import client

# Get all team totals for January 1st, 2018
client.team_box_scores(day=1, month=1, year=2018)

# The team_box_scores method also supports all output behavior previously described

Get season schedule

from basketball_reference_web_scraper import client

# Get all games for the 2017-2018 season
client.season_schedule(season_end_year=2018)

# The schedule method also supports all output behavior previously described

Get season totals for all players

from basketball_reference_web_scraper import client

# Get 2017-2018 season totals for all players
client.players_season_totals(season_end_year=2018)

# The players_season_totals method also supports all output behavior previously described

Get advanced season statistics for all players

from basketball_reference_web_scraper import client

# Get 2017-2018 advanced season statistics for all players
client.players_advanced_season_totals(season_end_year=2018)

# Get 2017-2018 advanced season statistics for all players and include advanced statistics for a player
# accumulated over entire course of the season
client.players_advanced_season_totals(season_end_year=2018, include_combined_values=True)

# The players_advanced_season_totals method also supports all output behavior previously described

Get play-by-play data for a game

The structure of the API is due to the unique URL pattern that Basketball Reference has for getting play-by-play data, which depends on the date of the game and the home team.

Example: https://www.basketball-reference.com/boxscores/pbp/201810160BOS.html

from basketball_reference_web_scraper import client
from basketball_reference_web_scraper.data import Team

# Get play-by-play data for 2018-10-16 game played at the Boston Celtics
play_by_play = client.play_by_play(
    home_team=Team.BOSTON_CELTICS,
    year=2018,
    month=10,
    day=16,
)

Get regular season box scores for a player

from basketball_reference_web_scraper import client

# Get regular season box scores for Russell Westbrook for the 2018-2019 season
client.regular_season_player_box_scores(
  player_identifier="westbru01",
  season_end_year=2019,
)

# The regular_season_player_box_score method supports all output behavior previously described

The player_identifier is Basketball Reference's unique identifier for each player. In the case of Russell Westbrook, his player_identifier is westbru01 (you can see this from his player page URL: https://www.basketball-reference.com/players/w/westbru01/gamelog/2020)

Get salary data for a team in a particular season

from basketball_reference_web_scraper import client
from basketball_reference.data import Team

# Get salaries of all the players on the 1997-1998 Bulls team
client.team_salaries(
  team=Team.CHICAGO_BULLS,
  1998
)

# The team_salaries method supports all output behavior previously described

Search

from basketball_reference_web_scraper import client

# Get all results that match "Ko"
client.search(term="Ko")

# The search method supports all output behavior previously described

Development

There are currently two supported major versions - V3 and V4.

There are two branches, v3 and v4 for both of these major versions - these are the defacto "master" branches to use when making changes.

master will reflect the latest major version branch.

Contributors

Thanks to @DaiJunyan, @ecallahan5, @Yotamho, and @ntsirakis for their contributions!