This repository contains the official implementation of "Face Inverse Rendering via Hierarchical Decoupling" PDF, which appeared in TIP 2022.
From top to bottom are the input face, predicted albedo, predicted shading, visualized light and predicted normal.Please see each subsection for training on different datasets. Available training datasets:
- 250k synthetic face images
- DPR
- FFHQ
- [Real Face Image] (Real paired face image needs warped and unwarped function for alignment from Nonlinear_Face_3DMM)
Run
python generate_dataset_csv.py \
--dataset_path $DATA_DIR
Run
python train_main.py \
--dataset_path $DATA_DIR \
--batch_size 8 \
--log_dir $LOG_DIR \
--stage $STAGE_NAME \
--datadir $DTU_DIR
Run
python test_main.py
Thanks to SfSNet-PyTorch, DPR, Nonlinear_Face_3DMM and 3DMM our code is partially borrowing from them.