/Captcha_CNN

使用Tensorflow搭建CNN实现验证码识别👺👺👺

Primary LanguagePython

完整代码:GitHub

我的简书:Awesome_Tang的简书

整个项目代码分为三部分:

  • Generrate_Captcha:
    • 生成验证码图片(训练集,验证集和测试集);
    • 读取图片数据和标签(标签即为图片文件名);
  • cnn_model:卷积神经网络;
  • driver:模型训练及评估。

Generate Captcha

配置项
class Config(object):
    width = 160 # 验证码图片的宽
    height = 60 # 验证码图片的高
    char_num = 4    # 验证码字符个数
    characters = range(10)
    test_folder = 'test'
    train_folder = 'train'
    validation_folder = 'validation'
    tensorboard_folder = 'tensorboard'  # tensorboard的log路径
    generate_num = (10000, 500, 500)    # 训练集,验证集和测试集数量
    alpha = 1e-3    # 学习率
    Epoch = 100 # 训练轮次
    batch_size = 64 # 批次数量
    keep_prob = 0.5 # dropout比例
    print_per_batch = 20    # 每多少次输出结果
    save_per_batch = 20	# 每多少次写入tensoboard
生成验证码(class Generate
  • 验证码图片示例:

0193

  • check_path():检查文件夹是否存在,如不存在则创建。
  • gen_captcha():生成验证码方法,写入之前检查是否以存在,如存在重新生成。

读取数据(classs ReadData

  • read_data():返回图片数组(numpy.array格式)和标签(即文件名);

  • label2vec():将文件名转为向量;

    • 例:

      label = '1327'
      
      label_vec = [0,1,0,0,0,0,0,0,0,0,
      		    0,0,0,1,0,0,0,0,0,0,
      		    0,0,1,0,0,0,0,0,0,0,
      		    0,0,0,0,0,0,0,1,0,0]
  • load_data():加载文件夹下所有图片,返回图片数组,标签和图片数量。

定义模型(cnn_model

采用三层卷积,filter_size均为5,为避免过拟合,每层卷积后面均接dropout操作,最终将$16060$的图像转为$208$的矩阵。

  • 大致结构如下:

    整体结构

训练&评估

  • next_batch():迭代器,分批次返还数据;
  • feed_data():给模型“喂”数据;
    • x:图像数组;
    • y:图像标签;
    • keep_prob:dropout比例;
  • evaluate():模型评估,用于验证集和测试集。
  • run_model():训练&评估

目前效果

目前经过8000次迭代训练集准确率可达99%以上,测试集准确率93%,还是存在一定过拟合,不过现在模型是基于CPU训练的,完成一次训练耗费时间大约4个小时左右,后续调整了再进行更新。

Images for train :10000, for validation : 1000, for test : 1000
Epoch : 1
Step     0, train_acc:   7.42%, train_loss:  1.43, val_acc:   9.85%, val_loss:  1.40, improved:*  
Step    20, train_acc:  12.50%, train_loss:  0.46, val_acc:  10.35%, val_loss:  0.46, improved:*  
Step    40, train_acc:   9.38%, train_loss:  0.37, val_acc:  10.10%, val_loss:  0.37, improved:   
Step    60, train_acc:   7.42%, train_loss:  0.34, val_acc:  10.25%, val_loss:  0.34, improved:   
Step    80, train_acc:   7.81%, train_loss:  0.33, val_acc:   9.82%, val_loss:  0.33, improved:   
Step   100, train_acc:  12.11%, train_loss:  0.33, val_acc:  10.00%, val_loss:  0.33, improved:   
Step   120, train_acc:   9.77%, train_loss:  0.33, val_acc:  10.07%, val_loss:  0.33, improved:   
Step   140, train_acc:   8.98%, train_loss:  0.33, val_acc:  10.40%, val_loss:  0.33, improved:*  
Epoch : 2
Step   160, train_acc:   8.20%, train_loss:  0.33, val_acc:  10.52%, val_loss:  0.33, improved:*  
...
Epoch : 51
Step  7860, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.37%, val_loss:  0.08, improved:   
Step  7880, train_acc:  99.61%, train_loss:  0.01, val_acc:  92.28%, val_loss:  0.08, improved:   
Step  7900, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.42%, val_loss:  0.08, improved:   
Step  7920, train_acc: 100.00%, train_loss:  0.00, val_acc:  92.83%, val_loss:  0.08, improved:   
Step  7940, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.77%, val_loss:  0.08, improved:   
Step  7960, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.68%, val_loss:  0.08, improved:   
Step  7980, train_acc: 100.00%, train_loss:  0.00, val_acc:  92.63%, val_loss:  0.09, improved:   
No improvement for over 1000 steps, auto-stopping....
Test accuracy:  93.00%, loss:  0.08
           
  • tensorboard

    • Accuracy

      accuracy

    • loss

      loss