完整代码:GitHub
我的简书:Awesome_Tang的简书
整个项目代码分为三部分:
Generrate_Captcha
:- 生成验证码图片(训练集,验证集和测试集);
- 读取图片数据和标签(标签即为图片文件名);
cnn_model
:卷积神经网络;driver
:模型训练及评估。
Generate Captcha
配置项
class Config(object):
width = 160 # 验证码图片的宽
height = 60 # 验证码图片的高
char_num = 4 # 验证码字符个数
characters = range(10)
test_folder = 'test'
train_folder = 'train'
validation_folder = 'validation'
tensorboard_folder = 'tensorboard' # tensorboard的log路径
generate_num = (10000, 500, 500) # 训练集,验证集和测试集数量
alpha = 1e-3 # 学习率
Epoch = 100 # 训练轮次
batch_size = 64 # 批次数量
keep_prob = 0.5 # dropout比例
print_per_batch = 20 # 每多少次输出结果
save_per_batch = 20 # 每多少次写入tensoboard
class Generate
)
生成验证码(- 验证码图片示例:
check_path()
:检查文件夹是否存在,如不存在则创建。gen_captcha()
:生成验证码方法,写入之前检查是否以存在,如存在重新生成。
classs ReadData
)
读取数据(-
read_data()
:返回图片数组(numpy.array
格式)和标签(即文件名); -
label2vec()
:将文件名转为向量;-
例:
label = '1327' label_vec = [0,1,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0]
-
-
load_data()
:加载文件夹下所有图片,返回图片数组,标签和图片数量。
cnn_model
)
定义模型(采用三层卷积,filter_size
均为5,为避免过拟合,每层卷积后面均接dropout
操作,最终将$16060$的图像转为$208$的矩阵。
训练&评估
next_batch()
:迭代器,分批次返还数据;feed_data()
:给模型“喂”数据;x
:图像数组;y
:图像标签;keep_prob
:dropout比例;
evaluate()
:模型评估,用于验证集和测试集。run_model()
:训练&评估
目前效果
目前经过8000次迭代训练集准确率可达99%以上,测试集准确率93%,还是存在一定过拟合,不过现在模型是基于CPU训练的,完成一次训练耗费时间大约4个小时左右,后续调整了再进行更新。
Images for train :10000, for validation : 1000, for test : 1000
Epoch : 1
Step 0, train_acc: 7.42%, train_loss: 1.43, val_acc: 9.85%, val_loss: 1.40, improved:*
Step 20, train_acc: 12.50%, train_loss: 0.46, val_acc: 10.35%, val_loss: 0.46, improved:*
Step 40, train_acc: 9.38%, train_loss: 0.37, val_acc: 10.10%, val_loss: 0.37, improved:
Step 60, train_acc: 7.42%, train_loss: 0.34, val_acc: 10.25%, val_loss: 0.34, improved:
Step 80, train_acc: 7.81%, train_loss: 0.33, val_acc: 9.82%, val_loss: 0.33, improved:
Step 100, train_acc: 12.11%, train_loss: 0.33, val_acc: 10.00%, val_loss: 0.33, improved:
Step 120, train_acc: 9.77%, train_loss: 0.33, val_acc: 10.07%, val_loss: 0.33, improved:
Step 140, train_acc: 8.98%, train_loss: 0.33, val_acc: 10.40%, val_loss: 0.33, improved:*
Epoch : 2
Step 160, train_acc: 8.20%, train_loss: 0.33, val_acc: 10.52%, val_loss: 0.33, improved:*
...
Epoch : 51
Step 7860, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.37%, val_loss: 0.08, improved:
Step 7880, train_acc: 99.61%, train_loss: 0.01, val_acc: 92.28%, val_loss: 0.08, improved:
Step 7900, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.42%, val_loss: 0.08, improved:
Step 7920, train_acc: 100.00%, train_loss: 0.00, val_acc: 92.83%, val_loss: 0.08, improved:
Step 7940, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.77%, val_loss: 0.08, improved:
Step 7960, train_acc: 100.00%, train_loss: 0.01, val_acc: 92.68%, val_loss: 0.08, improved:
Step 7980, train_acc: 100.00%, train_loss: 0.00, val_acc: 92.63%, val_loss: 0.09, improved:
No improvement for over 1000 steps, auto-stopping....
Test accuracy: 93.00%, loss: 0.08