Go walking under Van Gogh’s Starry Night!
- python 3.6
- pytorch 1.1.0 (
conda install pytorch torchvision torchaudio
)
pip install -r requirements.txt
To try the demo, run streamlit run main.py --server.maxUploadSize 1
One-click run version (including the installation, but might not work properly): bash run.sh
├── main.py
├── README.md
├── make_naive.py
├── auto_localization.py
├── harmonize.py
├── baiduAPI.py
├── requirements.txt
├── run.sh
├── Con_Sin_GAN
│ ├── ConSinGAN
│ ├── evaluate_model.py
│ └── main_train.py
├── Images
│ ├── default_human
│ ├── default_paintings
│ └── tmp
├── TrainedModels
│ ├── nightsky
│ ├── oil_building
│ ├── oil_tree
│ ├── pen_tree
│ ├── scream
│ ├── some_painting
│ ├── street
│ └── watercolor_building
└── MySegmentation
├── dataset.py
├── gen_mask.py
├── loadmodel.py
├── log
├── models
├── padding_data.py
├── pics
├── print_log
├── README.md
└── segmentation_train.py
Con_Sin_GAN is the directory for ConSinGAN implementations obtained from https://github.com/tohinz/ConSinGAN and modified by us for this project.
This directory saves the default painting images and human images, as well as some temporary images.
Models in this directory corresponds to the default painting images.
MySegmentation provides a FPN model implemented by ourselves. (But in our final demo, we use BaiduAPI for this project due to its better performance.)
Download Supervisely Person Dataset.
Use ./gen_mask.py
to extract label from .json
file.
Use ./padding_data.py
to get images with same size.
nohup python -u segmentation_train.py &> ./log/CVFPN.out&
Use ./print_log/printlog.ipynb
to print the log.
Use python loadmodel.py
to get the segmentation result.