Azure/pixel_level_land_classification
Tutorial demonstrating how to create a semantic segmentation (pixel-level classification) model to predict land cover from aerial imagery. This model can be used to identify newly developed or flooded land. Uses ground-truth labels and processed NAIP imagery provided by the Chesapeake Conservancy.
Jupyter NotebookMIT
Stargazers
- aarastehBasalam.com
- aayushmnit@Microsoft
- AnatoliyAksenovMoscow
- arccosinex
- balajiceg
- ChadChapman@invisible.ai
- chrisdoehringAllen Institute for Artificial Intelligence, EarthRanger.com, @PADAS
- ckras34
- danagerous@bcgov
- dcgull@earthrise-media
- debuops
- eczajk1Maryland
- ferhat00GSK
- fyremaelAfrica
- g-chi
- gaiar@zalando
- giswqsUniversity of Tennessee
- iled
- ilkarmanMicrosoft
- jennifermarsmanMicrosoft
- kikitaMoonEsri
- kpierce8Lacey, WA
- lmmx@beatchain
- MandelagTokopedia
- mawahMicrosoft
- michalwolsNew York
- mkieserTesera
- msalvaris
- PandinosaurusFrance
- plattdlFredrick, CO
- Qberto@Esri
- robmarkcole@earthdaily
- romarknmsu@esri
- tyguthrieBoulder, Colorado
- yangsiyu007Seattle, WA
- yong7743Esri