/VeloMagIA

Primary LanguageJupyter Notebook

Montpellier Bike Predictor

This project predicts the number of available bikes in Montpellier, France, using a small machine learning model that can be executed directly in a web browser.

Data Sources

Features

The model uses the following features for prediction:

['is_weekend', 'is_holiday', 'is_school_vacation', 'day_of_week', 'temp', 'max_temp', 'min_temp', 'precipitation', 'wind_speed', 'visibility', 'fog', 'rain', 'snow', 'hail', 'thunder', 'tornado', 'hour', 'minute']

Note: Some features (e.g., tornado) may not be particularly relevant for Montpellier but are included for model completeness.

Model Details

  • Framework: PyTorch
  • Web Implementation: ONNX Runtime for browser-based execution

Project Structure

The bike_predictor_web directory contains the implementation of the web-based prediction interface.

Model Performance

Based on 8000 test samples:

  • Mean Absolute Error: 0.38
  • Maximum Error: 3.58
    • Actual Value: 8.00
    • Predicted Value: 4.42
  • Number of errors > 1: 428
  • Number of errors ≤ 1: 7572
  • Percentage of errors > 1: 5.35%

Sample predictions:

  1. Actual: 5.00, Predicted: 4.83, Error: 0.17
  2. Actual: 6.00, Predicted: 5.75, Error: 0.25
  3. Actual: 6.00, Predicted: 5.68, Error: 0.32
  4. Actual: 4.00, Predicted: 3.94, Error: 0.06
  5. Actual: 6.00, Predicted: 5.64, Error: 0.36

Usage

To test the model:

  1. Install Flask:

    pip install flask
    
  2. Run the web application:

    python bike_predictor_web/app.py
    
  3. Open a web browser and navigate to http://localhost:5000

  4. Use the following sample data to test the model:

    • Day: Tuesday (day_of_week: 2)
    • Is weekend: No
    • Is holiday: No
    • Is school vacation: Yes
    • Temperature: 22.5°C
    • Max Temperature: 27.4°C
    • Min Temperature: 18.5°C
    • Precipitation: 0.0 mm
    • Wind Speed: 7.9 m/s
    • Visibility: 11.9 km
    • Fog, Rain, Snow, Hail, Thunder, Tornado: No
    • Time: 10:15

With these inputs, the model should return a prediction close to 8 available bikes.