Julie, Matilda, Léo, Laure
build_markov(sequence_table, order)`
- return : une table kmer_proba
Miléna, Lise, Dorine, Manon
markow_likelihood(sequence, table_kmer_proba, log=TRUE)`
Lisa, Océane, Justine
markov_likelihood_seq(sequence_table, table_kmer_proba)`
ou
markov_likelihood_seq(sequence_table, ...)`
markov_bayes(M0, M1, sequence_testing, priorM0 = 0.5)
- Applies markov_likelihood_seq on every M0 and M1
- Computes p(M|Seq) using Bayes
- Returns a tibble similar to markov_likelihood_seq with four extra columns
- lprob_M0 and lprob_M1
- lmodel_M0 and lmodel_M1
Julie, Laure, Léo
markov_specificity(M0s, M1s, sequence_testing, priorM0 = 0.5)
- Calls
markov_bayes
- Computes specificity for all model pairs
- returns
- Miléna, Lise*
markov_sensibility(M0s, M1s, sequence_testing, priorM0 = 0.5)
- Computes sensibility for all model pairs by calling
markov_specificity
markov_specificity(M0s = M1s, M1s = M0s, sequence_testing, priorM0 = 1 - priorM0)
markov_validate(sequence_learning_M0, sequence_learning_M1,
sequence_testing_M0, sequence_testing_M1,
order_min, order_max,
priorM0 = 0.5)
- prepare the models lists
- call
markov_specificity
&markov_sensibility
- merges both results in a three columns table
Manon, Dorine
markov_validate_kfold(sequence_learning_M0, sequence_learning_M1,
order_min, order_max,
priorM0 = 0.5,
learning_fraction = 0.8, nrand = 10)
- Repeat
nrand
times :- splits learning data set in learning and testing data sets
- calls
markov_validate
- returns the concatenated results of the
nrand
estimates.
Lisa, Justine, Oceane
Eric