/Python-Face-recognition-Attendance

Face recognition Attendance System with Python,QT5 and OpenCV

Primary LanguagePython

Introduction

This project is designed for IOT laboratory personnel check-in and attendance, and the system implements the following functions: **1. Personnel face recognition and complete check-in/check-out 2. Calculation of attendance time 3. Save the attendance data in CSV format (Excel) **

PS: This system 2D face recognition, saving the tedious face recognition training part, simple and fast

This project is a beta version, the official version will add more features, continue to update..... I'll put the beta project address at the end

Project renderings

System initialization login interface 在这里插入图片描述 Main interface display picture: 在这里插入图片描述 **Sign in function display ** 在这里插入图片描述 在这里插入图片描述 Sign out function display 在这里插入图片描述 Background check-in data recording 在这里插入图片描述 Check in/check out 在这里插入图片描述

The environment required for the project

OpenCV-Python 4.5.5.64 face_recognition 1.30 face_recognition_model 0.3.0 dlib 19.23.1

PyQt5 5.15.4 pyqt5-plugins 5.15.4.2.2 PyQt5-Qt5 5.15.2 PyQt5-sip 12.10.1 pyqt5-tools 5.15.4.3.2

**PythonVersion 3.9.12**

QT-designer

在这里插入图片描述 在这里插入图片描述

Code

CoreCode

MainWindow.py UI File:

class Ui_Dialog(QDialog):
    def __init__(self):
        super(Ui_Dialog, self).__init__()
        loadUi("mainwindow.ui", self)       #加载QTUI文件

        self.runButton.clicked.connect(self.runSlot)

        self._new_window = None
        self.Videocapture_ = None

Camera:

    def refreshAll(self):
        print("当前调用人俩检测摄像头编号(0为笔记本内置摄像头,1为USB外置摄像头):")
        self.Videocapture_ = "0"

OutWindow.py request Time

class Ui_OutputDialog(QDialog):
    def __init__(self):
        super(Ui_OutputDialog, self).__init__()
        loadUi("./outputwindow.ui", self)   #加载输出窗体UI

        #datetime 时间模块
        now = QDate.currentDate()
        current_date = now.toString('ddd dd MMMM yyyy')  #时间格式
        current_time = datetime.datetime.now().strftime("%I:%M %p")
        self.Date_Label.setText(current_date)
        self.Time_Label.setText(current_time)

        self.image = None

Check in time

    def ElapseList(self,name):
        with open('Attendance.csv', "r") as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=',')
            line_count = 2

            Time1 = datetime.datetime.now()
            Time2 = datetime.datetime.now()
            for row in csv_reader:
                for field in row:
                    if field in row:
                        if field == 'Clock In':
                            if row[0] == name:
                                Time1 = (datetime.datetime.strptime(row[1], '%y/%m/%d %H:%M:%S'))
                                self.TimeList1.append(Time1)
                        if field == 'Clock Out':
                            if row[0] == name:
                                Time2 = (datetime.datetime.strptime(row[1], '%y/%m/%d %H:%M:%S'))
                                self.TimeList2.append(Time2)

FaceRecognition

# 人脸识别部分
        faces_cur_frame = face_recognition.face_locations(frame)
        encodes_cur_frame = face_recognition.face_encodings(frame, faces_cur_frame)

        for encodeFace, faceLoc in zip(encodes_cur_frame, faces_cur_frame):
            match = face_recognition.compare_faces(encode_list_known, encodeFace, tolerance=0.50)
            face_dis = face_recognition.face_distance(encode_list_known, encodeFace)
            name = "unknown"    #未知人脸识别为unknown
            best_match_index = np.argmin(face_dis)
            if match[best_match_index]:
                name = class_names[best_match_index].upper()
                y1, x2, y2, x1 = faceLoc
                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
                cv2.rectangle(frame, (x1, y2 - 20), (x2, y2), (0, 255, 0), cv2.FILLED)
                cv2.putText(frame, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
            mark_attendance(name)

        return frame

CheckData

# csv表格保存数据
        def mark_attendance(name):
            """
            :param name: 人脸识别部分
            :return:
            """
            if self.ClockInButton.isChecked():
                self.ClockInButton.setEnabled(False)
                with open('Attendance.csv', 'a') as f:
                        if (name != 'unknown'):         #签到判断:是否为已经识别人脸
                            buttonReply = QMessageBox.question(self, '欢迎 ' + name, '开始签到' ,
                                                               QMessageBox.Yes | QMessageBox.No, QMessageBox.No)
                            if buttonReply == QMessageBox.Yes:

                                date_time_string = datetime.datetime.now().strftime("%y/%m/%d %H:%M:%S")
                                f.writelines(f'\n{name},{date_time_string},Clock In')
                                self.ClockInButton.setChecked(False)

                                self.NameLabel.setText(name)
                                self.StatusLabel.setText('签到')
                                self.HoursLabel.setText('开始签到计时中')
                                self.MinLabel.setText('')

                                self.Time1 = datetime.datetime.now()
                                self.ClockInButton.setEnabled(True)
                            else:
                                print('签到操作失败')
                                self.ClockInButton.setEnabled(True)
            elif self.ClockOutButton.isChecked():
                self.ClockOutButton.setEnabled(False)
                with open('Attendance.csv', 'a') as f:
                        if (name != 'unknown'):
                            buttonReply = QMessageBox.question(self, '嗨呀 ' + name, '确认签退?',
                                                              QMessageBox.Yes | QMessageBox.No, QMessageBox.No)
                            if buttonReply == QMessageBox.Yes:
                                date_time_string = datetime.datetime.now().strftime("%y/%m/%d %H:%M:%S")
                                f.writelines(f'\n{name},{date_time_string},Clock Out')
                                self.ClockOutButton.setChecked(False)

                                self.NameLabel.setText(name)
                                self.StatusLabel.setText('签退')
                                self.Time2 = datetime.datetime.now()

                                self.ElapseList(name)
                                self.TimeList2.append(datetime.datetime.now())
                                CheckInTime = self.TimeList1[-1]
                                CheckOutTime = self.TimeList2[-1]
                                self.ElapseHours = (CheckOutTime - CheckInTime)
                                self.MinLabel.setText("{:.0f}".format(abs(self.ElapseHours.total_seconds() / 60)%60) + 'm')
                                self.HoursLabel.setText("{:.0f}".format(abs(self.ElapseHours.total_seconds() / 60**2)) + 'h')
                                self.ClockOutButton.setEnabled(True)
                            else:
                                print('签退操作失败')
                                self.ClockOutButton.setEnabled(True)

Project directory structure

在这里插入图片描述

At Last

Because there is no face training model in this system, the system misrecognition rate is high and the security is low The system optimization is poor, the camera captures a low number of frames (8-9), the background occupies a high, and the CPU utilization is high Data is saved in CSV format, which has low security