/scc

Sloc, Cloc and Code: scc is a very fast accurate code counter with complexity calculations and COCOMO estimates written in pure Go

Primary LanguageGoMIT LicenseMIT

Sloc Cloc and Code (scc)

scc

A tool similar to cloc, sloccount and tokei. For counting physical the lines of code, blank lines, comment lines, and physical lines of source code in many programming languages.

Goal is to be the fastest code counter possible, but also perform COCOMO calculation like sloccount and to estimate code complexity similar to cyclomatic complexity calculators. In short one tool to rule them all.

Also it has a very short name which is easy to type scc.

If you don't like sloc cloc and code feel free to use the name Succinct Code Counter.

Build Status Go Report Card Coverage Status Scc Count Badge Mentioned in Awesome Go

Dual-licensed under MIT or the UNLICENSE.

Install

Go Get

If you are comfortable using Go and have >= 1.10 installed:

$ go get -u github.com/boyter/scc/

Snap

A snap install exists thanks to Ricardo.

$ sudo snap install scc

Homebrew

Of if you have homebrew installed

$ brew install scc

Manual

Binaries for Windows, GNU/Linux and macOS for both i386 and x86_64 machines are available from the releases page.

Other

If you would like to assist with getting scc added into apt/chocolatey/etc... please submit a PR or at least raise an issue with instructions.

Background

Read all about how it came to be along with performance benchmarks,

Some reviews of scc

A talk given at the first GopherCon AU about scc (press S to see speaker notes)

For performance see the Performance section

Other similar projects,

  • cloc the original sloc counter
  • gocloc a sloc counter in Go inspired by tokei
  • loc rust implementation similar to tokei but often faster
  • loccount Go implementation written and maintained by ESR
  • ployglot ATS sloc counter
  • sloccount written as a faster cloc
  • tokei fast, accurate and written in rust

Interesting reading about other code counting projects tokei, loc, polyglot and loccount

Further reading about processing files on the disk performance

Using scc to process 40 TB of files from Github/Bitbucket/Gitlab

Pitch

Why use scc?

  • It is very fast and gets faster the more CPU you throw at it
  • Accurate
  • Works very well across multiple platforms without slowdown (Windows, Linux, macOS)
  • Large language support
  • Can ignore duplicate files
  • Has complexity estimations
  • You need to tell the difference between Coq and Verilog in the same directory
  • cloc yaml output support so potentially a drop in replacement for some users
  • Can identify or ignore minified files
  • Able to identify many #! files
  • Can ignore large files by lines or bytes

Why not use scc?

  • You don't like Go for some reason
  • It cannot count D source with different nested multi-line comments correctly boyter#27

Differences

There are some important differences between scc and other tools that are out there. Here are a few important ones for you to consider.

Blank lines inside comments are counted as comments. While the line is technically blank the decision was made that once in a comment everything there should be considered a comment until that comment is ended. As such the following,

/* blank lines follow


*/

Would be counted as 4 lines of comments. This is noticeable when comparing scc's output to other tools on large repositories.

scc is also able count verbatim strings correctly. For example in C# the following,

private const string BasePath = @"a:\";
// The below is returned to the user as a version
private const string Version = "1.0.0";

Because of the prefixed @ this string ends at the trailing " by ignoring the escape character \ and as such should be counted as 2 code lines and 1 comment. Some tools are unable to deal with this and instead count up to the "1.0.0" as a string which can cause the middle comment to be counted as code rather than a comment.

Usage

Command line usage of scc is designed to be as simple as possible. Full details can be found in scc --help or scc -h.

Sloc, Cloc and Code. Count lines of code in a directory with complexity estimation.
Version 2.12.0
Ben Boyter <ben@boyter.org> + Contributors

Usage:
  scc [flags]

Flags:
      --avg-wage int                average wage value used for basic COCOMO calculation (default 56286)
      --binary                      disable binary file detection
      --by-file                     display output for every file
      --ci                          enable CI output settings where stdout is ASCII
      --count-as string             count extension as language [e.g. jsp:htm,chead:"C Header" maps extension jsp to html and chead to C Header]
      --debug                       enable debug output
      --exclude-dir strings         directories to exclude (default [.git,.hg,.svn])
      --file-gc-count int           number of files to parse before turning the GC on (default 10000)
  -f, --format string               set output format [tabular, wide, json, csv, cloc-yaml, html, html-table] (default "tabular")
      --gen                         identify generated files
      --generated-markers strings   string markers in head of generated files (default [do not edit])
  -h, --help                        help for scc
  -i, --include-ext strings         limit to file extensions [comma separated list: e.g. go,java,js]
  -l, --languages                   print supported languages and extensions
      --large-byte-count int        number of bytes a file can contain before being removed from output (default 1000000)
      --large-line-count int        number of lines a file can contain before being removed from output (default 40000)
      --min                         identify minified files
  -z, --min-gen                     identify minified or generated files
      --min-gen-line-length int     number of bytes per average line for file to be considered minified or generated (default 255)
      --no-cocomo                   remove COCOMO calculation output
  -c, --no-complexity               skip calculation of code complexity
  -d, --no-duplicates               remove duplicate files from stats and output
      --no-gen                      ignore generated files in output (implies --gen)
      --no-gitignore                disables .gitignore file logic
      --no-ignore                   disables .ignore file logic
      --no-large                    ignore files over certain byte and line size set by max-line-count and max-byte-count
      --no-min                      ignore minified files in output (implies --min)
      --no-min-gen                  ignore minified or generated files in output (implies --min-gen)
  -M, --not-match stringArray       ignore files and directories matching regular expression
  -o, --output string               output filename (default stdout)
  -s, --sort string                 column to sort by [files, name, lines, blanks, code, comments, complexity] (default "files")
  -t, --trace                       enable trace output (not recommended when processing multiple files)
  -v, --verbose                     verbose output
      --version                     version for scc
  -w, --wide                        wider output with additional statistics (implies --complexity)

Output should look something like the below for the redis project

$ scc .
───────────────────────────────────────────────────────────────────────────────
Language                 Files     Lines   Blanks  Comments     Code Complexity
───────────────────────────────────────────────────────────────────────────────
C                          258    153080    17005     26121   109954      27671
C Header                   200     28794     3252      5877    19665       1557
TCL                        101     17802     1879       981    14942       1439
Shell                       36      1109      133       252      724        118
Lua                         20       525       68        70      387         65
Autoconf                    18     10821     1026      1326     8469        951
Makefile                    10      1082      220       103      759         51
Ruby                        10       778       78        71      629        115
Markdown                     9      1935      527         0     1408          0
gitignore                    9       120       16         0      104          0
HTML                         5      9658     2928        12     6718          0
C++                          4       286       48        14      224         31
License                      4       100       20         0       80          0
YAML                         4       266       20         3      243          0
CSS                          2       107       16         0       91          0
Python                       2       219       39        18      162         68
Batch                        1        28        2         0       26          3
C++ Header                   1         9        1         3        5          0
Extensible Styleshe…         1        10        0         0       10          0
Plain Text                   1        23        7         0       16          0
Smarty Template              1        44        1         0       43          5
m4                           1       562      116        53      393          0
───────────────────────────────────────────────────────────────────────────────
Total                      698    227358    27402     34904   165052      32074
───────────────────────────────────────────────────────────────────────────────
Estimated Cost to Develop $5,755,686
Estimated Schedule Effort 29.835114 months
Estimated People Required 22.851995
───────────────────────────────────────────────────────────────────────────────

Note that you don't have to specify the directory you want to run against. Running scc will assume you want to run against the current directory.

You can also run against multiple files or directories scc directory1 directory2 file1 file2 with the results aggregated in the output.

Interesting Use Cases

Used inside Intel Nemu Hypervisor to track code changes between revisions https://github.com/intel/nemu/blob/topic/virt-x86/tools/cloc-change.sh#L9 Appears to also be used inside both http://codescoop.com/ and https://pinpoint.com/

Features

scc uses a small state machine in order to determine what state the code is when it reaches a newline \n. As such it is aware of and able to count

  • Single Line Comments
  • Multi Line Comments
  • Strings
  • Multi Line Strings
  • Blank lines

Because of this it is able to accurately determine if a comment is in a string or is actually a comment.

It also attempts to count the complexity of code. This is done by checking for branching operations in the code. For example, each of the following for if switch while else || && != == if encountered in Java would increment that files complexity by one.

Complexity Estimates

Lets take a minute to discuss the complexity estimate itself.

The complexity estimate is really just a number that is only comparable to files in the same language. It should not be used to compare languages directly without weighting them. The reason for this is that its calculated by looking for branch and loop statements in the code and incrementing a counter for that file.

Because some languages don't have loops and instead use recursion they can have a lower complexity count. Does this mean they are less complex? Probably not, but the tool cannot see this because it does not build an AST of the code as it only scans through it.

Generally though the complexity there is to help estimate between projects written in the same language, or for finding the most complex file in a project scc --by-file -s complexity which can be useful when you are estimating on how hard something is to maintain, or when looking for those files that should probably be refactored.

Large File Detection

You can have scc exclude large files from the output.

The option to do so is --no-large which by default will exclude files over 1,000,000 bytes or 40,000 lines.

You can control the size of either value using --large-byte-count or --large-line-count.

For example to exclude files over 1,000 lines and 50kb you could use the following,

scc --no-large --large-byte-count 50000 --large-line-count 1000

Minified/Generated File Detection

You can have scc identify and optionally remove files identified as being minified or generated from the output.

You can do so by enabling the -z flag like so scc -z which will identify any file with an average line byte size >= 255 (by default) as being minified.

Minified files appear like so in the output.

$ scc --no-cocomo -z ./examples/minified/jquery-3.1.1.min.js
───────────────────────────────────────────────────────────────────────────────
Language                 Files     Lines   Blanks  Comments     Code Complexity
───────────────────────────────────────────────────────────────────────────────
JavaScript (min)             1         4        0         1        3         17
───────────────────────────────────────────────────────────────────────────────
Total                        1         4        0         1        3         17
───────────────────────────────────────────────────────────────────────────────

Minified files are indicated with the text (min) after the language name.

Generated files are indicated with the text (gen) after the language name.

You can control the average line byte size using --min-gen-line-length such as scc -z --min-gen-line-length 1. Please note you need -z as modifying this value does not imply minified detection.

You can exclude minified files from the count totally using the flag --no-min-gen. Files which match the minified check will be excluded from the output.

Output Formats

By default scc will output to the console. However you can produce output in other formats if you require.

The different options are tabular, wide, json, csv, cloc-yaml, html, html-table.

Note that you can write scc output to disk using the -o, --output option. This allows you to specify a file to write your output to. For example scc -f html -o output.html will run scc against the current directory, and output the results in html to the file output.html.

Tabular

This is the default output format when scc is run.

Wide

Wide produces some additional information which is the complexity/lines metric. This can be useful when trying to identify the most complex file inside a project based on the complexity estimate.

JSON

JSON produces JSON output. Mostly designed to allow scc to feed into other programs.

CSV

CSV as an option is good for importing into a spreadsheet for analysis.

cloc-yaml

Is a drop in replacement for cloc using its yaml output option. This is quite often used for passing into other build systems and can help with replacing cloc if required.

$ scc -f cloc-yml processor
# https://github.com/boyter/scc/
header:
  url: https://github.com/boyter/scc/
  version: 2.11.0
  elapsed_seconds: 0.008
  n_files: 21
  n_lines: 6562
  files_per_second: 2625
  lines_per_second: 820250
Go:
  name: Go
  code: 5186
  comment: 273
  blank: 1103
  nFiles: 21
SUM:
  code: 5186
  comment: 273
  blank: 1103
  nFiles: 21

$ cloc --yaml processor
      21 text files.
      21 unique files.
       0 files ignored.

---
# http://cloc.sourceforge.net
header :
  cloc_url           : http://cloc.sourceforge.net
  cloc_version       : 1.60
  elapsed_seconds    : 0.196972846984863
  n_files            : 21
  n_lines            : 6562
  files_per_second   : 106.613679608407
  lines_per_second   : 33314.2364566841
Go:
  nFiles: 21
  blank: 1137
  comment: 606
  code: 4819
SUM:
  blank: 1137
  code: 4819
  comment: 606
  nFiles: 21

HTML and HTML-TABLE

The HTML output options produce a minimal html report using a table that is either standalone html or as just a table html-table which can be injected into your own HTML pages. The only difference between the two is that the html option includes html head and body tags with minimal styling.

The markup is designed to allow your own custom styles to be applied. An example report is here to view.

Note that the HTML options follow the command line options, so you can use scc --by-file -f html to produce a report with every file and not just the summary.

Performance

Generally scc will the fastest code counter compared to any I am aware of and have compared against. The below comparisons are taken from the fastest alternative counters. See Other similar projects above to see all of the other code counters compared against. It is designed to scale to as many CPU's cores as you can provide.

However if you want greater performance and you have RAM to spare you can disable the garbage collector like the following on linux GOGC=-1 scc . which should speed things up considerably. For some repositories turning off the code complexity calculation via -c can reduce runtime as well.

Benchmarks are run on fresh 32 Core CPU Optimised Digital Ocean Virtual Machine 2019/10/10 all done using hyperfine with 3 warm-up runs and 10 timed runs.

scc v2.8.0
tokei v10.0.1
loc v0.5.0
polyglot v0.5.25
Program Runtime
scc 60.0 ms ± 5.8 ms
scc (no complexity) 49.1 ms ± 4.7 ms
tokei 47.1 ms ± 3.9 ms
loc 66.3 ms ± 25.4 ms
polyglot 41.8 ms ± 1.3 ms
Program Runtime
scc 112.9 ms ± 19.8 ms
scc (no complexity) 91.7 ms ± 19.2 ms
tokei 103.6 ms ± 10.3 ms
loc 177.0 ms ± 44.2 ms
polyglot 175.8 ms ± 8.0 ms
Program Runtime
scc 682.2 ms ± 29.6 ms
scc (no complexity) 538.1 ms ± 26.3 ms
tokei 782.8 ms ± 30.4 ms
loc 1.957 s ± 0.031 s
polyglot 1.736 s ± 0.063 s

If you enable duplicate detection expect performance to fall by about 20% in scc.

Performance is tracked over each release and presented below.

scc

CI/CD Support

Some CI/CD systems which will remain nameless do not work very well with the box-lines used by scc. To support those systems better there is an option --ci which will change the default output to ASCII only.

$ scc --ci main.go
-------------------------------------------------------------------------------
Language                 Files     Lines   Blanks  Comments     Code Complexity
-------------------------------------------------------------------------------
Go                           1       171        6         4      161          2
-------------------------------------------------------------------------------
Total                        1       171        6         4      161          2
-------------------------------------------------------------------------------
Estimated Cost to Develop $3,969
Estimated Schedule Effort 1.876811 months
Estimated People Required 0.250551
-------------------------------------------------------------------------------

Development

If you want to hack away feel free! PR's are accepted. Some things to keep in mind. If you want to change a language definition you need to update languages.json and then run go generate which will convert it into the processor/constants.go file.

For all other changes ensure you run all tests before submitting. You can do so using go test ./.... However for maximum coverage please run test-all.sh which will run gofmt, unit tests, race detector and then all of the integration tests. All of those must pass to ensure a stable release.

API Support

The core part of scc which is the counting engine is exposed publicly to be integrated into other Go applications. See https://github.com/pinpt/ripsrc for an example of how to do this. However as a quick start consider the following,

package main

import (
	"fmt"
	"io/ioutil"

	"github.com/boyter/scc/processor"
)

type statsProcessor struct{}

func (p *statsProcessor) ProcessLine(job *processor.FileJob, currentLine int64, lineType processor.LineType) bool {
	switch lineType {
	case processor.LINE_BLANK:
		fmt.Println(currentLine, "lineType", "BLANK")
	case processor.LINE_CODE:
		fmt.Println(currentLine, "lineType", "CODE")
	case processor.LINE_COMMENT:
		fmt.Println(currentLine, "lineType", "COMMENT")
	}
	return true
}

func main() {
	bts, _ := ioutil.ReadFile("somefile.go")

	t := &statsProcessor{}
	filejob := &processor.FileJob{
		Filename: "test.go",
		Language: "Go",
		Content:  bts,
		Callback: t,
	}

	processor.ProcessConstants() // Required to load the language information and need only be done once
	processor.CountStats(filejob)
}

Adding/Modifying Languages

To add or modify a language you will need to edit the languages.json file in the root of the project, and then run go generate to build it into the application. You can then go install or go build as normal to produce the binary with your modifications.

Issues

Its possible that you may see the counts vary between runs. This usually means one of two things. Either something is changing or locking the files under scc, or that you are hitting ulimit restrictions. To change the ulimit see the following links.

To help identify this issue run scc like so scc -v . and look for the message too many open files in the output. If it is there you can rectify it by setting your ulimit to a higher value.

Low Memory

If you are running scc in a low memory environment < 512 MB of RAM you may need to set --file-gc-count to a lower value such as 0 to force the garbage collector to be on at all times.

A sign that this is required will be scc crashing with panic errors.

Tests

scc is pretty well tested with many unit, integration and benchmarks to ensure that it is fast and complete.

Package

Run go build for windows and linux then the following in linux, keep in mind need to update the version

GOOS=darwin GOARCH=amd64 go build -ldflags="-s -w" && zip -r9 scc-2.12.0-x86_64-apple-darwin.zip scc
GOOS=darwin GOARCH=386 go build -ldflags="-s -w" && zip -r9 scc-2.12.0-i386-apple-darwin.zip scc
GOOS=windows GOARCH=amd64 go build -ldflags="-s -w" && zip -r9 scc-2.12.0-x86_64-pc-windows.zip scc.exe
GOOS=windows GOARCH=386 go build -ldflags="-s -w" && zip -r9 scc-2.12.0-i386-pc-windows.zip scc.exe
GOOS=linux GOARCH=amd64 go build -ldflags="-s -w" && zip -r9 scc-2.12.0-x86_64-unknown-linux.zip scc
GOOS=linux GOARCH=386 go build -ldflags="-s -w" && zip -r9 scc-2.12.0-i386-unknown-linux.zip scc

Badges (beta)

You can use scc to provide badges on your github/bitbucket/gitlab open repositories. For example, Scc Count Badge The format to do so is,

https://sloc.xyz/PROVIDER/USER/REPO

An example of the badge for scc is included below, and is used on this page.

[![Scc Count Badge](https://sloc.xyz/github/boyter/scc/)](https://github.com/boyter/scc/)

By default the badge will show the repo's lines count. You can also specify for it to show a different category, by using the ?category= query string.

Valid values include code, blanks, lines, comments, cocomo and examples of the appearance are included below.

Scc Count Badge Scc Count Badge Scc Count Badge Scc Count Badge Scc Count Badge

For cocomo you can also set the avg-wage value similar to scc itself. For example,

https://sloc.xyz/github/boyter/scc/?category=cocomo&avg-wage=1 https://sloc.xyz/github/boyter/scc/?category=cocomo&avg-wage=100000

Note that the avg-wage value must be a positive integer otherwise it will revert back to the default value of 56286.

NB it may not work for VERY large repositories (has been tested on Apache hadoop/spark without issue).

Languages

List of supported languages. The master version of scc supports 239 languages at last count. Note that this is always assumed that you built from master, and it might trail behind what is actually supported. To see what your version of scc supports run scc --languages

Click here to view all languages supported by master