/IDS2018-DDoS-Traffic-Classify

基于IDS 2018数据集使用LightGBM和XGBoost实现DDoS流量分类 sFlow RT&Mininet流量采集与分类 杭电综合项目实践

Primary LanguageJupyter NotebookGNU General Public License v3.0GPL-3.0

IDS2018-DDoS-Traffic-Classify

杭电综合项目实践源代码,主要包括:

  • 模型训练:基于公开的入侵检测数据集IDS 2018中Thursday-15-02这一天的数据,使用LightGBM和XGBoost算法训练DDoS流量分类模型,实现对正常流量和DDoS流量的分类,模型五折交叉验证AUC达到0.99
  • 流量采集与分类:基于软件定义网络虚拟环境Mininet搭建了一个简单的网络拓扑,通过使用sFlow RT采集网络流量,并利用DDoS流量分类模型进行检测,模型AUC为0.81

目录

依赖

  • Anaconda 3环境
  • pip install lightgbm
  • pip install xgboost

使用

数据集下载

数据集存储在AWS上,因此首先需要安装AWS CLI

安装完成后,在命令行中输入以下命令查看目录下的所有文件:

aws s3 ls --no-sign-request "s3://cse-cic-ids2018" --recursive --human-readable --summarize

下载数据集:

aws s3 cp --no-sign-request "s3://cse-cic-ids2018/Processed Traffic Data for ML Algorithms/Thursday-15-02-2018_TrafficForML_CICFlowMeter.csv" G:\

AWS CLI下载并不稳定,可以直接访问http://cse-cic-ids2018.s3.amazonaws.com/Processed%20Traffic%20Data%20for%20ML%20Algorithms/Thursday-15-02-2018_TrafficForML_CICFlowMeter.csv 下载。

模型训练

文件 内容
dataset_understanding.ipynb 数据理解
EDA.ipynb 数据探索性分析
feature_engineering.ipynb 特征工程
baseline.ipynb initial baseline
baseline2.ipynb final baseline

流量采集

两台虚拟机,安装Ubuntu,一台作为sFlow Collector,另一台作为sFlow Agent。

sFlow Collector

配置JDK环境,下载sFlow RT 3.0,安装sFlow RT流量分析APP flow-trend和browse-metrics:

./sflow-rt/get-app.sh sflow-rt flow-trend
./sflow-rt/get-app.sh sflow-rt browse-metrics

启动

./sflow-rt/start.sh

访问localhost:8008打开Web界面,sFlow Collector接收sFlow Agent数据在6343端口。

sFlow Agent

配置Mininet环境,mn创建拓扑。

设置交换机开启sFlow功能:

ovs-vsctl -- --id=@sflow create sflow agent=eth0 target=\"192.168.222.129:6343\" sampling=10 polling=1 -- set bridge s1 sflow=@sflow

查看已配置的sFlow Agent:

ovs-vsctl list sflow

查看网络链路情况:

ip link

定义流

./sflow_traffic/define_flow.py

采集流量

./sflow_traffic/get_data_from_sflow.py

流量分类

./sflow_traffic/sflow_traffic_classift.ipynb

License

GPL © Bil369