A gazenet for mapping pupil position to gaze position based on resnet-18 & resnet-50
- Train
python train_gazenet.py --datasets=data_train --saveas=model_name --log=log_name --test=True
- Test
python run_gazenet.py --model=only_real.pt --test_data="test_data"
-
cal_err.py
Calculate the error of world camera, magnified world camera and merged result and save the result as the format of .csv .
-
divide_datas&create_heatmap.py
Divide the original data to train directory and test directory.
Create the heatmap data based on the original coordinate data.
-
heatmap.py
Create heatmap by coordinates.
-
sec_loc_to_main.py
Convert the pupil position in magnified world camera to the position in world camera.
-
process_data.py
Process the original data collected from Pupil-labs and classify them by users and points.
-
dsnt.py
A network to inferring numerical coordinates for points of interest in an input image.
-
DSNT_example.py
An example of DSNT.
-
covert_timestamps.py
Covert the timestamps in 'gaze_positions.csv' collected from Pupil-labs.
https://pan.baidu.com/s/1VrXuF1A1aFoKvd97LSZngw
-
data for train
The training data is placed in the same level directory of the project.
data_train:
User1
1_0.5667716914521796_0.3138741861260126
test
train
2_0.5648374717682599_0.4591849427256318
test
train
User2
1_0.4707907267592169_0.49320440212082794
test
train
2_0.6005824524164199_0.49661581171883473
test
train
-
data for test
The test data is placed in the project directory.
data_test:
User34
1_0.5977993905916809_0.31144010497464075
2_0.5928179999323265_0.46354587733397024
User35
1_0.4549585918895902_0.4715157294162997
2_0.5872032236896062_0.46782584350708645
- Python 3.6
- PyTorch 0.3.0.post4
- OpenCV 3.0
- tensorboardX