/TF-GPH

(AAAI'25) Training-and-pormpt Free General Painterly Image Harmonization Using image-wise attention sharing

Primary LanguageJupyter NotebookMIT LicenseMIT

arXiv

TF-GPH

Training-and-pormpt Free General Painterly Image Harmonization Using image-wise attention sharing image image

Setup

Our codebase is built on Stable-Diffusion and has shared dependencies and model architecture. A VRAM of 23 GB is recommended (RTX 3090 for example), though this may vary depending on the input samples (minimum 20 GB).

This github repo is based on TF-ICON and MasaCtrl

Creating a Conda Environment

git clone https://github.com/BlueDyee/TF-GPH.git
cd TF-GPH
conda env create -f tfgph_env.yaml
conda activate tfgph

Downloading Stable-Diffusion Weights

Download the StableDiffusion weights from the Stability AI at Hugging Face (download the sd-v2-1_512-ema-pruned.ckpt file, This will occupy around 5GB storage) For example

wget -O v2-1_512-ema-pruned.ckpt https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt?download=true

Run

We provide three methods to run our repo web app (gradio)/ipynb/py

app

Running the TF-GPH webui

python tfgph_app.py

ipynb

Runall

py

Using default parameters

python tfgph_main.py 

Customize parameters

(Due to the conflict between mathematical correctness and code conciseness, the effect of share_step in the code is different from that in the paper.)

(In the code, share_step views the inverted latent z_T as 0th step, so share_step 15 means to normally denoise for 15 steps, then denoise with shared attention in the remaining steps.)

python tfgph_main.py --ref1 "./inputs/demo_input/kangaroo.jpg" \
                     --ref2 "./inputs/demo_input/starry_night.jpg" \
                     --comp "./inputs/demo_input/kangaroo_starry.jpg" \
                     --share_step 15 \
                     --share_layer 12 \

Evaluation of GPH Benchmark

Your data directory should be looked like:

GPH Benchmark demo data
├── background_data
│   ├── x.png
│   └── xx.png
├── composite_data
│   ├── x.png
│   └── xx.png
├── foreground_data
│   ├── x.png
│   └── xx.png
├── harmonized_data **(Your Generation result)**
│   ├── x.png
│   └── xx.png
├── mask_data
│   ├── x.png
│   └── xx.png
python comput_metrics.py -r "GPH Benchmark demo data"

More Results

image image image image image