/ECGdataAnalysis

Primary LanguageJupyter Notebook

ECGdataAnalysis

Master project for analysing ECG data using machine learning techniques. Started in July 2018. Purpose for the project was to learn and improve on aspects of current ECG analysis techniques.

Blog post and progress report : https://chontiramaster.blogspot.com/?zx=c376798730ec5246

Referece softwares: WFDB from PhysioNet and https://github.com/mondejar/ecg-classification

Referecne papers:

Luz, E. J. da S., Schwartz, W. R., Cámara-Chávez, G., & Menotti, D. (2016). ECG-based heartbeat classification for arrhythmia detection: A survey. Computer Methods and Programs in Biomedicine, 127, 144–164. https://doi.org/10.1016/j.cmpb.2015.12.008

Macfarlane, P. W., Mason, J. W., Kligfield, P., Sommargren, C. E., Drew, B., van Dam, P., … Hodges, M. (2017). Debatable issues in automated ECG reporting. Journal of Electrocardiology, 50(6), 833–840. https://doi.org/10.1016/j.jelectrocard.2017.08.027

Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50. https://doi.org/10.1109/51.932724

Postma, S., Bergmeijer, T., ten Berg, J., & van ’t Hof, A. (2012). Pre-hospital diagnosis, triage and treatment in patients with ST elevation myocardial infarction. Heart, 98(22), 1674–1678. https://doi.org/10.1136/heartjnl-2012-302035

Potter, B. J., Matteau, A., Mansour, S., Essiambre, R., Montigny, M., Savoie, S., & Gobeil, F. (2013). Performance of a new “physician-less” automated system of prehospital ST-segment elevation myocardial infarction diagnosis and catheterization laboratory activation. American Journal of Cardiology, 112(2), 156–161. https://doi.org/10.1016/j.amjcard.2013.03.005

Poulikakos, D., & Malik, M. (2016). Challenges of ECG monitoring and ECG interpretation in dialysis units. Journal of Electrocardiology, 49(6), 855–859. https://doi.org/10.1016/j.jelectrocard.2016.07.019

Schläpfer, J., & Wellens, H. J. (2017). Computer-Interpreted Electrocardiograms: Benefits and Limitations. Journal of the American College of Cardiology, 70(9), 1183–1192. https://doi.org/10.1016/j.jacc.2017.07.723

Sun, X., Park, J., & Kang, K. (2015). Arrhythmia classification using nearest neighbor search with principal component analysis. Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics - BCB ’15, 553–555. https://doi.org/10.1145/2808719.2811573