/materials

A comprehensive list of materials losses at millikelvin temperatures and single photon powers

Primary LanguageSCSSCreative Commons Zero v1.0 UniversalCC0-1.0

materials

A comprehensive list of materials losses at millikelvin temperatures and single photon powers

DIELECTRIC MATERIALS

Dielectric material measurements. Columns (from left to right): material of interest (Material), reference where the measurement is reported (Reference), method of dielectric deposition (Dep.), design of the measured device (Geom.), reported low power loss δ_LP, and resonator-induced intrinsic TLS loss Fδ^0_TLS. CVD: chemical vapor deposition. Therm. ox.: thermal oxidation. PECVD: plasma-enhanced CVD. ICP CVD: inductively coupled plasma CVD. MBE: molecular beam epitaxy. ECR-PECVD: electron cyclotron resonance PECVD. LE: lumped element resonator design. LE PPC: lumped element resonator with the parallel plate capacitor. IDC: lumped element resonator with the interdigitated capacitor.

Note that values cannot be directly compared due to differences in the TLS filling factor, resonance frequency, Qi/Qc matching, fabrication, magnetic shielding, IR filtering and isolation, thermalization, and data fitting.

Material Reference Dep. Geom. δ_LP [x 10^-5] Fδ^0_TLS [x 10^-5]
LaAlO3 Degnan 20221 Substrate CPW 0.91
MgAl2O4 Degnan 20221 Substrate CPW 0.5
a-SiC:H Buijtendorp 20212 PECVD Microstrip 3.2
a-Si Hahnle 2021[^Hahnle2021] PECVD Microstrip 3.7
a-Ge Kopas 20213 Therm. evap. CPW 0.47-1.1
InGaAs/InAs/InGaAs/InAlAs stack on InP Phan 2021^[Phan2021] MBE CPW 40
Al2O3 McRae 20204 Sputter LE PPC 100
HSQ Niepce 20205 Spin-on-glass CPW 800
B4C Wisbey 20196 Sputter CPW 10-15
BN Wisbey 20196 Sputter CPW 6
AlOx Brehm 20177 Anodic ox. CPW + PPC 4-22
a-Si Lecocq 20178 PECVD LE PPC 15-50
SiN Duff 20169 ICP-PECVD Microstrip 78
SiO2 Goetz 201610 Therm. ox. CPW 0.34-0.89
SiNx Sarabi 201611 PECVD LE PPC 78
AlOx Deng 201412 Plasma ox. LE overlap 140-180
HfO2 Burnett 201313 Sputter LE IDC 1.5-2.5
Al2O3 Burnett 201313 Sputter LE IDC 2.0-2.5
Al2O3 Cho 201314 PLD LE PPC 3-5
SiOx Li 201315 ECR-PECVD Microstrip 100-700
AlOx Pappas 201116 Therm. ox. CPW F x 100
Al2O3 Weides 201117 MBE LE PPC 6
a-SiO2 Cicak 201018 ECR-PECVD LE PPC 600
a-SiN Cicak 201018 ECR-PECVD LE PPC 40-50
a-Si Cicak 201018 Sputter LE PPC 150-200
Nb2O5 Kaiser 201019 Anodic ox. LE PPC 100-400
SiO Kaiser 201019 Therm. evap. LE PPC 20-50
SiNx Kaiser 201019 PECVD LE PPC 10-30
a-SiN Paik 201020 ICP CVD LE PPC 2.5-120
a-Si:H OConnell 200821 NA LE PPC, CPW 1-13
SiNx OConnell 200821 NA LE PPC, CPW 10-20
SiO2 OConnell 200821 Therm. ox. CPW 30-33
Si OConnell 200821 Sputtered CPW 50-60
AlN OConnell 200821 NA CPW 110-180
SiO2 OConnell 200821 PECVD CPW 270-290
MgO OConnell 200821 NA CPW 500-800
a-SiO2 Martinis 200522 CVD LE PPC 500
a-SiNx Martinis 200522 CVD LE PPC 20

THIN FILM SUPERCONDUCTING METALS

Loss measurements of superconducting metals. Columns (from left to right): superconductor in the measured device (SC), reference where the measurement is reported (Reference), method of metal deposition (Dep.), surface treatments applied and etch type used to define resonators (Surf./Etch), substrate on which the metal was deposited (Substrate), design of the measured device (Geom.), reported low power loss δLP, resonator-induced intrinsic TLS loss Fδ^0_TLS, width w of the conductor, and gap g between the conductor and the ground plane. Therm. evap.: thermal evaporation. MBE: molecular beam epitaxy. PVD: plasma vapor deposition. RIE: reactive ion etch. H-pass.: hydrogen-passivated. λ/2 or λ/4: CPW resonator of length stated. LE IDC: lumped element resonator with the interdigitated capacitor. NA: information not available.

Note that values cannot be directly compared due to significant experimental differences.

SC Reference Dep. Surf./Etch Substrate Geom. δ_LP [x 10^-6] Fδ^0_TLS [x 10^-6] w/g
NbN/TiN Kim202123 Sputter NA / RIE Si λ/2 3.68
Nb Zheng202224 E-beam BOE / RIE Si λ/4 0.29 3/2
Nb Kowsari202125 E-beam Piranha+BOE / RIE Si λ/4 0.194 3/2
TiN Gao202126 MBE 300C anneal / RIE Al2O3 λ/2 hanger 0.3 10/6
TiN Gao202126 MBE 300C anneal / wet etch Al2O3 λ/2 hanger 0.3 10/6
TiN Lock201927 Sputter HF / RIE Si λ/4 0.2-30 3/12
Nb Nersisyan201928 PVD Various / RIE Si λ/4 0.8-6
TiN Woods201929 Sputter RCA / RIE Si λ/4 0.3-1
Al Burnett 201830 E-beam HF / wet etch Si λ/4 1.3 1.1
TiN Calusine 201831 Sputter RCA / RIE Si λ/4 0.3 16/8-22/11
Al Earnest 201832 E-beam none / RIE Si λ/4 3.1 3.27 15/9
Al Earnest 201832 E-beam RCA-1+HF / RIE Si λ/4 1.9 1.53 15/9
Al Earnest 201832 E-beam Anneal / RIE Si λ/4 1.8 1.56 15/9
Al Earnest 201832 E-beam RCA-1+HF+anneal / RIE Si λ/4 1.2 0.8 15/9
In McRae 201833 Therm. evap. none / wet etch Si λ/4 40 12/6
In McRae 201833 Therm. evap. HF / wet etch Si λ/4 50 12/6
TiN Shearrow 201834 ALD Nano-Strip, HF / RIE Si LE IDC 0.5-17
NbN DeGraaf 201735 Sputter none / NA Al2O3 Fractal 10.4-10.6 g=2
NbN DeGraaf 201735 Sputter Anneal / NA Al2O3 Fractal 7.44, 7.69 g=2
Nb+Pt Burnett 201636 MBE NA / RIE Al2O3 LE IDC 12
Nb Burnett 201636 Sputter NA / RIE Al2O3 Fractal 1.1
Nb Goetz 201610 Sputter HF / RIE Si λ/2 0.9 20/12
Nb Goetz 201610 Sputter Ar mill / RIE Al2O3 λ/2 1.6 20/12
Al Richardson 201637 MBE Various / wet etch Si λ/4 0.2-760 3/2-22/12
Al Richardson 201637 MBE Various / RIE Si λ/4 0.5-4800 3/2-22/12
Al Richardson 201637 MBE Various / wet etch Al2O3 λ/4 0.5-5.3 3/2-22/12
Al Richardson 201637 MBE Various / RIE Al2O3 λ/4 0.4-7.4 3/2-22/12
TiN Ohya 201438 Sputter Nano-Strip+HF / RIE Si λ/4 1 15/10
Nb Burnett 201313 Sputter NA Al2O3 LE IDC 2.0
Re Cho 201314 MBE Anneal / NA Al2O3 LE IDC 30-50
NbTiN Barends 2010b39 Sputter H-pass., RIE Si λ/4 3 3/2-6/2
Ta Barends 2010b39 Sputter NA, RIE Si λ/4 30 5/2
Nb Macha 201040 NA none / dry etch Al2O3 λ/2 2.4-2.6 50/30
Nb Macha 201040 NA none / dry etch Si λ/2 1.3, 1.6 50/30
Al Macha 201040 NA none / liftoff Al2O3 λ/2 2.0 50/30
Re Wang 200941 E-beam NA / RIE Al2O3 λ/4 1-3 16/6.4-5/2
Al Wang 200941 Sputter NA / RIE Al2O3 λ/4 3-10 16/6.4-5/2
Nb Gao 2008b42 NA NA Al2O3 λ/4 2.4-29.8 3/2-50/33
Nb Kumar 200843 NA NA, RIE Si λ/4 29.4 5/1
Al O'Connell 200821 NA NA Si λ/2 <5-12
Re O'Connell 200821 NA NA Al2O3 λ/2 <6-10
Al O'Connell 200821 NA NA Al2O3 λ/2 <9-21
Al O'Connell 200821 NA NA Al2O3 LE IDC 41-47

REFERENCES

Footnotes

  1. Degnan, Z., He, X., Frieiro, A. G., Sachkou, Y. P., Fedorov, A., & Jacobson, P. (2022). Ternary Metal Oxide Substrates for Superconducting Circuits. http://arxiv.org/abs/2201.06228 2

  2. Buijtendorp, B. T., Vollebregt, S., Karatsu, K., Thoen, D. J., Murugesan, V., Kouwenhoven, K., … Endo, A. Hydrogenated Amorphous Silicon Carbide: A Low-loss Deposited Dielectric for Microwave to Submillimeter Wave Superconducting Circuits (2021). http://arxiv.org/abs/2110.03500

  3. Kopas, C. J., Gonzales, J., Zhang, S. , Queen, D. R., Wagner, B., Robinson, M., Huffman, J., Newman, N., "Low microwave loss in deposited Si and Ge thin-film dielectrics at single-photon power and low temperatures." AIP Advances 11, 095007 (2021). https://doi.org/10.1063/5.0041525

  4. McRae, C. R. H., Lake, R. E., Long, J. L., Bal, M., Wu, X., Jugdersuren, B., Metcalf, T. H., Liu, X., and Pappas, D. P., “Dielectric loss extraction for superconducting microwave resonators,” Appl. Phys. Lett. 116, 194003 (2020)

  5. Niepce, D., Burnett, J. J., Latorre, M. G., and Bylander, J., “Geometric scaling of two-level-system loss in superconducting resonators,” Supercond. Sci. Technol. 33, 025013 (2020)

  6. Wisbey, D. S., Vissers, M. R., Gao, J., Kline, J. S., Sandberg, M. O., Weides, M. P., Paquette, M., Karki, S., Brewster, J., Alameri, D., et al., “Dielectric loss of boron-based dielectrics on niobium resonators,” J. Low Temp. Phys. 195, 474–486 (2019) 2

  7. Brehm, J. D., Bilmes, A., Weiss, G., Ustinov, A. V., and Lisenfeld, J.,“Transmission-line resonators for the study of individual two-level tunneling systems,” Appl. Phys. Lett. 111, 112601 (2017)

  8. Lecocq, F., Ranzani, L., Peterson, G., Cicak, K., Simmonds, R., Teufel, J., and Aumentado, J., “Nonreciprocal microwave signal processing with a field-programmable josephson amplifier,” Phys. Rev. Applied 7, 024028 (2017)

  9. Duff, S. M., Austermann, J., Beall, J., Becker, D., Datta, R., Gallardo, P.,Henderson, S., Hilton, G., Ho, S., Hubmayr, J., et al., “Advanced actpol multichroic polarimeter array fabrication process for 150 mm wafers,” J.Low Temp. Phys. 184, 634–641 (2016)

  10. Goetz, J., Deppe, F., Haeberlein, M., Wulschner, F., Zollitsch, C. W., Meier,S., Fischer, M., Eder, P., Xie, E., Fedorov, K. G., et al., “Loss mechanisms in superconducting thin film microwave resonators,” J. Appl. Phys. 119, 015304 (2016) 2 3

  11. Sarabi, B., Ramanayaka, A. N., Burin, A. L., Wellstood, F.C., and Osborn, K.D., “Projected dipole moments of individual two-level defects extracted using circuit quantum electrodynamics,” Phys. Rev. Lett. 116,167002 (2016)

  12. Deng, C., Otto, M., and Lupascu, A., “Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation,” Appl. Phys. Lett. 104, 043506 (2014)

  13. Burnett, J., Lindström, T., Oxborrow, M., Harada, Y., Sekine, Y., Meeson,P., and Tzalenchuk, A.Y., “Slow noise processes in superconducting resonators,” Phys. Rev. B 87, 140501 (2013) 2 3

  14. Cho, K.-H., Patel, U., Podkaminer, J., Gao, Y., Folkman, C., Bark, C., Lee, S.,Zhang, Y., Pan, X., McDermott, R.,et al., “Epitaxial Al2O3 capacitors forlow microwave loss superconducting quantum circuits,” APL Materials 1, 042115 (2013). 2

  15. Li, D., Gao, J., Austermann, J., Beall, J., Becker, D., Cho, H.-M., Fox, A. E. Halverson, N., Henning, J., Hilton, G.,et al., “Improvements in silicon oxide dielectric loss for superconducting microwave detector circuits,” IEEE Trans. Appl. Supercond. 23, 1501204–1501204 (2013).

  16. Pappas, D. P., Vissers, M. R., Wisbey, D. S., Kline, J. S., and Gao, J., “Two level system loss in superconducting microwave resonators,” IEEE Trans. Appl. Supercond. 21, 871–874 (2011)

  17. Weides, M. P., Kline, J. S., Vissers, M. R., Sandberg, M. O., Wisbey, D. S.,Johnson, B. R., Ohki, T. A., and Pappas, D. P., “Coherence in a transmonqubit with epitaxial tunnel junctions,” Appl. Phys. Lett. 99, 262502 (2011)

  18. Cicak, K., Li, D., Strong, J. A., Allman, M. S., Altomare, F., Sirois, A. J.,Whittaker, J. D., Teufel, J. D., and Simmonds, R. W., “Low-loss superconducting resonant circuits using vacuum-gap-based microwave components,” Appl. Phys. Lett. 96, 093502 (2010) 2 3

  19. Kaiser, C., Skacel, S., Wünsch, S., Dolata, R., Mackrodt, B., Zorin, A., andSiegel, M., “Measurement of dielectric losses in amorphous thin films at gigahertz frequencies using superconducting resonators,” Supercond. Sci.Technol.23, 075008 (2010) 2 3

  20. Paik, H. and Osborn, K. D., “Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits,” Appl. Phys. Lett. 96, 072505 (2010)

  21. O’Connell, A. D., Ansmann, M., Bialczak, R. C., Hofheinz, M., Katz, N.,Lucero, E., McKenney, C., Neeley, M., Wang, H., Weig, E. M.,et al.,“Microwave dielectric loss at single photon energies and millikelvin temperatures,” Appl. Phys. Lett. 92, 112903 (2008) 2 3 4 5 6 7 8 9 10 11

  22. Martinis, J. M., Cooper, K. B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K., Cicak, K., Oh, S., Pappas, D. P., Simmonds, R. W. et al., “Decoherence in Josephson qubits from dielectric loss,” Phys. Rev. Lett. 95, 210503 (2005) 2

  23. Kim, S., Terai, H., Yamashita, T., Qiu, W., Fuse, T., Yoshihara, F., … Semba, K. Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si Substrate. Communications Materials 2, 98 (2021)

  24. Zheng, K., Kowsari, D., Thobaben, N. J., Du, X., Song, X., Ran, S., … Murch, K. W. (2022). Nitrogen Plasma Passivated Niobium Resonators for Superconducting Quantum Circuits. http://arxiv.org/abs/2201.01776

  25. Kowsari, D., Zheng, K., Monroe, J. T., Thobaben, N. J., Du, X., Harrington, P. M., … Murch, K. W. Fabrication and surface treatment of electron-beam evaporated niobium for low-loss coplanar waveguide resonators. Applied Physics Letters, 119 (13), 132601 (2021).

  26. Gao, R., Yu, W., Deng, H., Ku, H.-S., Li, Z., Wang, M., … Deng, C. (2021). Epitaxial titanium nitride microwave resonators: Structural, chemical, electrical, and microwave properties. http://arxiv.org/abs/2111.04227 2

  27. Lock, E. H., Xu, P., Kohler, T., Camacho, L., Prestigiacomo, J., Rosen, Y. J., and Osborn, K. D., “Using surface engineering to modulate superconducting coplanar microwave resonator performance,” IEEE Trans. Appl. Supercond. 29, 1700108 (2019).

  28. Nersisyan, A., Poletto, S., Alidoust, N., Manenti, R., Renzas, R., Bui, C., Vu, K., Whyland, T., Mohan, Y., Sete, E. A. et al., “Manufacturing low dissipation superconducting quantum processors,” in 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2019, pp. 31.1.1–31.1.4

  29. Woods, W., Calusine, G., Melville, A., Sevi, A., Golden, E., Kim, D. K., Rosenberg, D., Yoder, J. L., and Oliver, W. D., “Determining interface dielectric losses in superconducting coplanar-waveguide resonators,” Phys. Rev. Appl. 12 (1), 014012 (2019)

  30. Burnett, J., Bengtsson, A., Niepce, D., and Bylander, J., “Noise and loss of superconducting aluminium resonators at single photon energies,” J. Phys. Conf. Ser. 969, 012131 (2018).

  31. Calusine, G., Melville, A., Woods, W., Das, R., Stull, C., Bolkhovsky, V., Braje, D., Hover, D., Kim, D. K., Miloshi, X. et al., “Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators,” Appl. Phys. Lett. 112, 062601 (2018).

  32. Earnest, C. T., Béjanin, J. H., McConkey, T. G., Peters, E. A., Korinek, A., Yuan, H., and Mariantoni, M., “Substrate surface engineering for high-quality silicon/aluminium superconducting resonators,” Supercond. Sci. Technol. 31, 125013 (2018) 2 3 4

  33. McRae, C. R. H., Béjanin, J. H., Earnest, C. T., McConkey, T. G., Rinehart, J. R., Deimert, C., Thomas, J. P., Wasilewski, Z. R., and Mariantoni, M., “Thin film metrology and microwave loss characterization ofindium and aluminum/indium superconducting planar resonators,” J. Appl. Phys. 123 (20), 205304 (2018). 2

  34. Shearrow, A., Koolstra, G., Whiteley, S. J., Earnest, N., Barry, P. S., Heremans, F. J., Awschalom, D. D., Shirokoff, E., and Schuster, D. I., “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113 (21), 212601 (2018).

  35. De Graaf, S., Faoro, L., Burnett, J., Adamyan, A., Tzalenchuk, A. Y., Kubatkin, S., Lindström, T., and Danilov, A., “Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption,” Nat. Commun. 9, 1143 (2018). 2

  36. Burnett, J., Faoro, L., and Lindström, T., “Analysis of high quality superconducting resonators: consequences for TLS properties in amorphous oxides, ”Supercond. Sci. Technol. 29, 044008 (2016) 2

  37. Richardson, C., Siwak, N., Hackley, J., Keane, Z., Robinson, J., Arey, B., Arslan, I., and Palmer, B., “Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators,” Supercond. Sci. Technol. 29, 064003 (2016) 2 3 4

  38. Ohya, S., Chiaro, B., Megrant, A., Neill, C., Barends, R., Chen, Y., Kelly,J., Low, D., Mutus, J., O’Malley, P., et al., “Room temperature deposition of sputtered tin films for superconducting coplanar waveguide resonators, ”Supercond. Sci. Technol. 27, 015009 (2013)

  39. Barends, R., Vercruyssen, N., Endo, A., De Visser, P., Zijlstra, T., Klapwijk, T., Diener, P., Yates, S., and Baselmans, J., “Minimal resonator loss for circuit quantum electrodynamics,” Appl. Phys. Lett. 97, 023508 (2010) 2

  40. Macha, P., van Der Ploeg, S., Oelsner, G., Ilichev, E., Meyer, H.-G., Wünsch, S., and Siegel, M., “Losses in coplanar waveguide resonators at millikelvin temperatures,” Appl. Phys. Lett. 96, 062503 (2010) 2 3

  41. Wang, H., Hofheinz, M., Wenner, J., Ansmann, M., Bialczak, R., Lenander, M., Lucero, E., Neeley, M., O’Connell, A., Sank, D., et al., “Improving the coherence time of superconducting coplanar resonators,” Appl. Phys. Lett. 95, 233508 (2009) 2

  42. Gao, J., Daal, M., Martinis, J. M., Vayonakis, A., Zmuidzinas, J., Sadoulet, B., Mazin, B. A., Day, P. K., and Leduc, H. G., “A semiempirical model for two-level system noise in superconducting microresonators,” Appl. Phys. Lett. 92, 212504 (2008b)

  43. Kumar, S., Gao, J., Zmuidzinas, J., Mazin, B.A., LeDuc, H.G., and Day, P.K., “Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators,” Appl. Phys. Lett. 92, 123503 (2008)