/newton-py

The template I use on every python project has some basic commands and helpful tips in the read me.

Primary LanguagePythonMIT LicenseMIT

Newton-Python

Boiler that includes commands and some useful python code

Useful commands

Create virtual enviornment

python3 -m venv env

Activate enviornment

source env/bin/activate

Freeze dependencies

pip freeze > requirements.txt

The Zen of Python, by Tim Peters

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than right now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea.

Run REPL

python3

Helpful commands

Type

type()

Python has a very easy way of determining the type of something: with the type() function.

Just pass any object into the type() method:

name = "Adam"
type(name)

Dir

dir()

dir() stands for directory.

If we check the type of str (notice, no quotes here) in the REPL, we’ll see all the methods available on strings in Python.

We’ll use some of these methods later in the day.

Help

help()

The last useful method is help(). You can pass a type, method, or other object to help() to instantly see available documentation about the method, the parameters it expects, and what it returns.

help(str.isupper)

Reverse an iterable

iterableVar[::-1]

Understanding slice notation

It's pretty simple really:

a[start:stop]  # items start through stop-1
a[start:]      # items start through the rest of the array
a[:stop]       # items from the beginning through stop-1
a[:]           # a copy of the whole array

There is also the step value, which can be used with any of the above:

a[start:stop:step] # start through not past stop, by step

The key point to remember is that the :stop value represents the first value that is not in the selected slice. So, the difference between stop and start is the number of elements selected (if step is 1, the default).

The other feature is that start or stop may be a negative number, which means it counts from the end of the array instead of the beginning. So:

a[-1]    # last item in the array
a[-2:]   # last two items in the array
a[:-2]   # everything except the last two items

Similarly, step may be a negative number:

a[::-1]    # all items in the array, reversed
a[1::-1]   # the first two items, reversed
a[:-3:-1]  # the last two items, reversed
a[-3::-1]  # everything except the last two items, reversed

Python is kind to the programmer if there are fewer items than you ask for. For example, if you ask for a[:-2] and a only contains one element, you get an empty list instead of an error. Sometimes you would prefer the error, so you have to be aware that this may happen.

Relation to slice() object

The slicing operator [] is actually being used in the above code with a slice() object using the : notation (which is only valid within []), i.e.:

a[start:stop:step]

is equivalent to:

a[slice(start, stop, step)]

Slice objects also behave slightly differently depending on the number of arguments, similarly to range(), i.e. both slice(stop) and slice(start, stop[, step]) are supported. To skip specifying a given argument, one might use None, so that e.g. a[start:] is equivalent to a[slice(start, None)] or a[::-1] is equivalent to a[slice(None, None, -1)].

While the :-based notation is very helpful for simple slicing, the explicit use of slice() objects simplifies the programmatic generation of slicing.