appSHNE: The Application of Representation Learning for Semantic-Associated Heterogeneous Networks in Creating Android App Embedding Layers
Paper: https://briggs599.github.io/
- wrote EDA notebook that is callable from command line
- Run EDA with the following command line parameter:
-eda
- EDA can be run with the following parameters:
time
andlimit
python run.py -eda -time
will run the EDA and print the time to run it on completion
- Run EDA with the following command line parameter:
- Cleaned old code and adding documentation
- To do:
- Clean up parameters in
config/params.json
and delete unused parameters - Remove unused methods
- update dockerfile with
nbconvert
andpandoc
to runEDA.ipynb
from command line - Run EDA on 1000 apps
- Clean up parameters in
- added argument
-log
for the<redirect_std_out>
(save console output to log file) parameter - Moved SHNE_code to
src
directory
-t
,-test
,-Test
: Run on test set-node2vec
,-n2v
: Run with node2vec instead of word2vec--skip-embeddings
: Skip the word embeddings stage--skip-shne
: Skip SHNE model creation final step-p
,-parse
: Only create node dictionariesdict_A.json
,dict_B.json
,dict_P.json
,dict_I.json
,api_calls.json
, andnaming_key.json
-o
,-overwrite
: Overwrite previous node dictionaries created when parsing--save-out
: Save console output to file-time
: time how long to runmain.py
- All outputs will be saved under the values for
<out_path>
and<test_out_path>
- Subdirectories to save configured in respective dictionary.
- For instance word2vec embeddings will be saved under the path
<save_dir>
in the<word2vec-params>
dictionary intconfig/params.json
- For instance word2vec embeddings will be saved under the path
- Subdirectories to save configured in respective dictionary.
- All filenames parameterizable