AttentionDTA: drug--target binding affinity prediction by sequence-based deep learning with attention mechanism
This repository contains the source code and the data.
Dependencies:
- python 3.6
- pytorch >=1.2
- numpy
- sklearn
- tqdm
- tensorboardX
- prefetch_generator
-
README.md: this file.
-
datasets: The datasets used in paper.
- KIBA.txt:
- Metz.txt:
- Davis.txt
In the directory of data, we now have the original data "./datasets/KIBA.txt" as follows:
Drug_ID Protein_ID Drug_SMILES Amino_acid_sequence affinity CHEMBL1087421 O00141 COC1=C(C=C2C(=C... MTVKTEAAKGTLTYSRMRGM... 11.1
-
dataset.py: data process.
-
AttentionDTA_main.py: train and test the model.
-
Hyperparameter_research.py: hyperparameter seach of AttentionDTA
-
model.py: AttentionDTA model architecture
-
Learning_rate_select.py: find the suitable learning rate
python HpyerAttentionDTI_main.py
python Learning_rate_select.py
python Hyperparameter_research.py