/Knowledgebase-Chat

RAG + openai to chat with a knowledgebase.

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

RAG-Powered Chat Application

This project implements a Retrieval-Augmented Generation (RAG) system with OpenAI integration, featuring document upload capabilities and a streaming chat API.

Features

  • Document upload and processing for RAG
  • Streaming chat API with OpenAI integration
  • FastAPI-based web server

Installation

  1. Install tesseract-ocr and Clone the repository.
  • For macOS, use Homebrew: brew install tesseract
  • For ubuntu: sudo apt-get update && sudo apt-get install tesseract-ocr
  1. Create a virtual environment and activate it:
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
pip install --no-build-isolation faiss-cpu==1.7.2
Click to expend: If you suffer an error: `Failed to build faiss-cpu` from this step: The error is related to building the faiss-cpu package, which requires SWIG. Here's a quick guide to resolve this issue: 1. Install SWIG:
  • For macOS, use Homebrew: brew install swig
  • For ubuntu: sudo apt-get update && sudo apt-get install build-essential swig libopenblas-dev
  1. or, SWIG does not work
  • you can try using Anaconda/Miniconda. However, I dont want to put much tutorial here.
  1. After installing SWIG, try installing the requirements again:

    pip install -r requirements.txt
    
  2. If issues persist with faiss-cpu, try using a pre-built wheel:

    • In requirements.txt, replace faiss-cpu==1.7.2 with faiss-cpu==1.7.2 --only-binary :all:
  3. Alternatively, use faiss-cpu from conda:

    • Install Miniconda or Anaconda
    • Create a new conda environment: conda create -n your_env_name python=3.8
    • Install faiss-cpu: conda install -c conda-forge faiss-cpu
    • Install other requirements: pip install -r requirements.txt
  1. Start the server:

    Create a .env file: Create a file named .env in the root directory of the project and add the following content:

    OPENAI_API_BASE=https://XXXXX/v1
    OPENAI_API_KEY=your_api_key_here
    

Following that, run this command:

python -m venv venv
source venv/bin/activate
uvicorn app:app --host 0.0.0.0 --port 8000

The server will run on http://localhost:8000

API Endpoints:

  • POST /upload: Upload a document for processing
    • Parameters:
      • file: The document file to upload
      • doc_type: (Optional) The type of the document
    • Returns:
      • lib_id: A unique identifier for the uploaded document's RAG instance
  • POST /chat: Send a chat message and receive a streaming response
    • Parameters:
      • message: The chat message to process
      • lib_id: The unique identifier of the RAG instance to use for this chat

Usage Example:

  1. Upload a document:

    curl -X POST -F "file=@your_document.pdf" -F "doc_type=pdf" http://localhost:8000/upload
    

    This will return a lib_id in the response.

  2. Chat using the uploaded document:

    curl -X POST -F "message=Your question here" -F "lib_id=the_lib_id_from_upload" http://localhost:8000/chat
    

    Replace the_lib_id_from_upload with the actual lib_id received from the upload response.

Acknowledgements