/Yolov5_Magic

🚀🚀🚀一款面向改进Yolov5的开源仓库,提供丰富的魔改Yolov5方法 An open source repository for improving Yolov5, providing rich magic methods

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

一款面向改进Yolov5的开源仓库,提供丰富的魔改方法

An Open Source Repository for Improving Yolov5, Providing Rich Magic Methods

image

QQ交流群 迪菲赫尔曼

改进方式教程

Tutorial on How to Improve

  1. 手把手带你调参YOLOv5 (v5.0-v7.0)(推理)🌟强烈推荐

  2. 手把手带你调参YOLOv5 (v5.0-v7.0)(训练)🚀

  3. 手把手带你调参YOLOv5 (v5.0-v7.0)(验证)

  4. 简单三步 用YOLOv5快速训练自己的数据集

  5. 手把手带你YOLOv5/v7 (v5.0-v7.0)添加注意力机制(一)(并附上30多种顶会Attention原理图)🌟强烈推荐🍀新增8种

  6. 手把手带你YOLOv5/v7 (v5.0-v7.0)添加注意力机制(二)(在C3模块中加入注意力机制)

  7. YOLOv5/v7 如何更换激活函数?

  8. YOLOv5 如何更换BiFPN?

  9. YOLOv5 数据增强方式解析

  10. YOLOv5/v7 更换上采样方式( 最近邻 / 双线性 / 双立方 / 三线性 / 转置卷积)

  11. YOLOv5/v7 如何更换EIOU / alpha IOU / SIoU?

  12. YOLOv5/v7 应用轻量级通用上采样算子CARAFE

  13. 空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC🚀

  14. 用于低分辨率图像和小物体的模块SPD-Conv

  15. GSConv+Slim-neck 减轻模型的复杂度同时提升精度

  16. 头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器

  17. Stand-Alone Self-Attention | 搭建纯注意力FPN+PAN结构

  18. 改进YOLOv5/v7 | 引入密集连接卷积网络DenseNet** | 搭建密集连接模块

  19. YOLOv5/v7 更换骨干网络之 PP-LCNet

  20. YOLOv5/v7 更换骨干网络之 EfficientNet-B0

  21. YOLOv5/v7 更换骨干网络之 MobileNet V3

  22. YOLOv5/v7 更换骨干网络之 GhostNet

  23. YOLOv5/v7 更换骨干网络之 ShuffleNetv2

  24. YOLOv5/v7 引入 最新 BiFusion Neck🍀

  25. YOLOv5/v7 引入 YOLOv8 的 C2f 模块🍀

  26. YOLOv5/v7 引入 RepVGG 重参数化模块🍀

  27. YOLOv5 模型剪枝实战✂️

  28. YOLOv5 知识蒸馏实战⚗️

  29. YOLOv7 知识蒸馏实战⚗️

  30. YOLOv5/v7 Falsk Web 部署💻

  31. YOLOv5/v7添加PyQt5页面📟

  32. YOLOv5 安卓部署📱


Performance

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
params
(M)
FLOPs
@640 (B)
Weights
YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5 YOLOv5n
YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5 YOLOv5s
YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0 YOLOv5m
YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1 YOLOv5l
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7 YOLOv5x
YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6 YOLOv5n6
YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8 YOLOv5s6
YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0 YOLOv5m6
YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4 YOLOv5l6
YOLOv5x6
+ TTA
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-
YOLOv5x6
SPP Structure Parameter and GFLOPs
Model 参数量(parameters) 计算量(GFLOPs)
SPP 7225885 16.5
SPPF 7235389 16.5
SimSPPF 7235389 16.5
ASPP 15485725 23.1
BasicRFB 7895421 17.1
SPPCSPC 13663549 21.7
SPPCSPC_group 8355133 17.4
Others Structure Parameter and GFLOPs
Model 参数量(parameters) 计算量(GFLOPs)
TransposeConv upsampling 7241917 16.6
InceptionConv 7233597 16.2
BiFPN 7384006 17.2
ShuffleNetv2 3844193 8.1
CARAFE 7369445 17.0
Update log 2022.8.22 yolo.py Add Chinese annotations🍀

2022.8.24 Add Demo of Pyqt page🍀

Acknowledgements https://github.com/ultralytics/yolov5