NumPy is one of the main libraries for performing scientific computing in Python. Using NumPy, you can create high-performance multi-dimensional arrays, and several tools to work with these arrays.
A NumPy array can store a grid of values. All the values must be of the same type. NumPy arrays are n-dimensional, and the number of dimensions is denoted by the rank of the NumPy array. The shape of an array is a tuple of integers which holds the size of the array along each of the dimensions.
For more information on NumPy, refer to http://www.numpy.org/.
You will be able to:
- Understand how to initialize NumPy arrays from nested Python lists and access elements using square brackets
- Understand the shape attribute of NumPy arrays
- Understand how to create arrays from scratch including
np.zeros()
,np.ones()
,np.full()
- Learn to perform scalar and vector math
First, remember that it is customary to import NumPy as np
.
import numpy as np
One easy way to create a numpy array is from a Python list. The two are similar in a number of manners but NumPy is optimized in a number of ways for performing mathematical operations, including having a number of built-in methods that will be extraordinarily useful.
x = np.array([1,2,3])
print(type(x))
<class 'numpy.ndarray'>
Notice right off the bat how basic mathematical operations will be applied elementwise in a NumPy array versus a literal interpretation with a Python list:
x * 3 #multiplies each element by 3
array([3, 6, 9])
[1,2,3] * 3 #returns the list 3 times
[1, 2, 3, 1, 2, 3, 1, 2, 3]
x + 2 #Adds two to each element
array([3, 4, 5])
[1,2,3] + 2 # Returns an error; different data types
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-b531f5f7b60f> in <module>()
----> 1 [1,2,3] + 2 # Returns an error; different data types
TypeError: can only concatenate list (not "int") to list
np.add(arr,1) |
Add 1 to each array element |
np.subtract(arr,2) |
Subtract 2 from each array element |
np.multiply(arr,3) |
Multiply each array element by 3 |
np.divide(arr,4) |
Divide each array element by 4 (returns np.nan for division by zero) |
np.power(arr,5) |
Raise each array element to the 5th power |
np.add(arr1,arr2) |
Elementwise add arr2 to arr1 |
np.subtract(arr1,arr2) |
Elementwise subtract arr2 from arr1 |
np.multiply(arr1,arr2) |
Elementwise multiply arr1 by arr2 |
np.divide(arr1,arr2) |
Elementwise divide arr1 by arr2 |
np.power(arr1,arr2) |
Elementwise raise arr1 raised to the power of arr2 |
np.array_equal(arr1,arr2) |
Returns True if the arrays have the same elements and shape |
np.sqrt(arr) |
Square root of each element in the array |
np.sin(arr) |
Sine of each element in the array |
np.log(arr) |
Natural log of each element in the array |
np.abs(arr) |
Absolute value of each element in the array |
np.ceil(arr) |
Rounds up to the nearest int |
np.floor(arr) |
Rounds down to the nearest int |
np.round(arr) |
Rounds to the nearest int |
[1,2,3] + [4,5,6] #Adding raw lists is just appending
[1, 2, 3, 4, 5, 6]
np.array([1,2,3]) + np.array([4,5,6]) #Adds elements
array([5, 7, 9])
#Same as above with built-in method
x = np.array([1,2,3])
y = np.array([4,5,6])
np.add(x,y)
array([5, 7, 9])
NumPy arrays are also very useful for storing multidimensional data such as matrices. Notice how NumPy tries to nicely align the elements.
#An ordinary nested list
y = [[1,2], [3,4]]
print(type(y))
y
<class 'list'>
[[1, 2], [3, 4]]
#Reformatted as a NumPy array
y = np.array([[1,2], [3,4]])
print(type(y))
y
<class 'numpy.ndarray'>
array([[1, 2],
[3, 4]])
One of the most important attributes to understand with this is the shape of a NumPy array.
y.shape
(2, 2)
y = np.array([[1,2,3],[4,5,6]])
print(y.shape)
y
(2, 3)
array([[1, 2, 3],
[4, 5, 6]])
y = np.array([[1,2],[3,4],[5,6]])
print(y.shape)
y
(3, 2)
array([[1, 2],
[3, 4],
[5, 6]])
y = np.array([[[1,2],[3,4],[5,6]],
[[1,2],[3,4],[5,6]]
])
print(y.shape)
y
(2, 3, 2)
array([[[1, 2],
[3, 4],
[5, 6]],
[[1, 2],
[3, 4],
[5, 6]]])
NumPy also has several built-in methods for creating arrays that are useful in practice. These methods are particularly useful:
np.zeros(shape)
np.ones(shape)
np.full(shape, fill)
np.zeros(5) #one dimensional; 5 elements
array([0., 0., 0., 0., 0.])
np.zeros([2,2]) #two dimensional; 2x2 matrix
array([[0., 0.],
[0., 0.]])
np.zeros([3,5]) #2 dimensional; 3x5 matrix
array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
np.zeros([3,4,5]) #3 dimensional; 3 4x5 matrices
array([[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]])
np.ones(5)
array([1., 1., 1., 1., 1.])
np.ones([3,4])
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
np.full(5, 3) #Create a 1d array with 5 elements, all of which are 3
array([3, 3, 3, 3, 3])
np.full(5, range(5)) #Create a 1d array with 5 elements, filling them with the values 0 to 4
array([0, 1, 2, 3, 4])
#Sadly this trick won't work for multidimensional arrays
np.full([2,5], range(10))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-24-4dfd668a5ec0> in <module>()
1 #Sadly this trick won't work for multidimensional arrays
----> 2 np.full([2,5], range(10))
~/anaconda3/lib/python3.6/site-packages/numpy/core/numeric.py in full(shape, fill_value, dtype, order)
297 dtype = array(fill_value).dtype
298 a = empty(shape, dtype, order)
--> 299 multiarray.copyto(a, fill_value, casting='unsafe')
300 return a
301
ValueError: could not broadcast input array from shape (10) into shape (2,5)
np.full([2,5], np.pi) #NumPy also has useful built-in mathematical numbers
array([[3.14159265, 3.14159265, 3.14159265, 3.14159265, 3.14159265],
[3.14159265, 3.14159265, 3.14159265, 3.14159265, 3.14159265]])
You can subset NumPy arrays very similarly to list slicing in python.
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12]])
print(x.shape)
x
(4, 3)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
x[0] #Retrieving the first row
array([1, 2, 3])
x[1:] #Retrieving all rows after the first row
array([[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
This becomes particularly useful in multidimensional arrays when we can slice on multiple dimensions
x[:,0] #All rows, column 0
array([ 1, 4, 7, 10])
x[2:4,1:3] #Rows 2 through 4, columns 1 through 3
array([[ 8, 9],
[11, 12]])
x = [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]
x
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
x[0]
[1, 2, 3]
x[:,0]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-33-879a04ce8a40> in <module>()
----> 1 x[:,0]
TypeError: list indices must be integers or slices, not tuple
#To slice along a second dimension with lists we must verbosely use a list comprehension
[i[0] for i in x]
[1, 4, 7, 10]
#Doing this in multiple dimensions with lists
[i[1:3] for i in x[2:4]]
[[8, 9], [11, 12]]
#With an array
x = np.array([
[[1,2,3], [4,5,6]],
[[7,8,9], [10,11,12]]
])
x
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
x.shape
(2, 2, 3)
x[:,:,-1]
array([[ 3, 6],
[ 9, 12]])
Great! You learned about a bunch of NumPy commands. Now, let's move over to the lab to put your new skills into practice!